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Simulated channel entrance flow
at Re D 100. The fluid enters on
top and exits at the bottom. Note
how the streamlines (light) con-
verge towards the center while
the pressure contours (dark) flat-
ten out as the Poiseuille profile is
established downstream.

A two-dimensional semi-infinite channel between parallel plates a distance 2a apart carries
an incompressible steady flow with average velocity U . The entrance length L has been
estimated on page PCM-265 to be of the form,

L

2a
� kRe; Re D

2aU

�
; (1)

with k � 1=16 � 0:063 for Re � 1. The goal of the following calculation is to obtain a
better estimate by emulating the calculation of Langhaar for the case of pipe entrance flow1.

We first establish the geometry and the exact Navier-Stokes equations, as well as the sym-
metries and the boundary conditions. Next we show that Prandtl’s boundary layer equations
(page PCM-486) are valid with small modifications. Integral relations are derived, and a
velocity profile is derived, leading to the final result k D 0:039.

1 Navier-Stokes equations in 2D
In the region (0 � x <1, �a � y � a), channel flow satisfies the continuity equation,

rxvx Cryvy D 0; (2)

and the Navier-Stokes equations,

.vxrx C vyry/vx D �rxp=�C �.r
2
x Cr

2
y /vx ; (3)

.vxrx C vyry/vy D �ryp=�C �.r
2
x Cr

2
y /vy ; (4)

where � is the (constant) density. Symmetry demands that vx is even in y and vy is odd,
whereas the pressure is even,

vx.x;�y/ D vx.x; y/; vy.x;�y/ D �vy.x; y/; p.x;�y/ D p.x; y/: (5)

This limits the region of interest to (0 � x <1, 0 � y � a).
The boundary conditions become

vx D U; vy D 0; .x D 0; 0 � y � a/; (6)

vx D
3
2
U.1 � y2=a2/; vy D 0; .x D1; 0 � y � a/; (7)

ryvx D 0; vy D 0; .0 � x � 1; y D 0/; (8)
vx D 0; vy D 0; .0 � x � 1; y D a/: (9)

The boundary values for the pressure are determined by these (up to a constant).
1H. L. Langhaar, Steady flow in the transition length of a straight tube, Journal of Applied Mechanics 64 (1942)

A55–A58.



2 PHYSICS OF CONTINUOUS MATTER

Without loss of generality we shall in the following choose units such that

� D U D a D 1 (10)

For Re� 1 eq. (1) implies that L � 1=� � Re.

2 The Prandtl approximation
In making estimates we note that vx � 1 in the bulk of the flow. Using that rx � 1=L � �
and ry � 1, the continuity equation implies that in the bulk of the flow,

vy � �: (11)

Assuming a long entrance region, L� 1, the transverse velocity is always small.
Multiplying the first NS-equation by L leads to the following estimate of the x-variation

in pressure from advection and viscosity

�xp � 1C �L � 1: (12)

We have dropped the double x-derivative in the Laplacian, because it is of order 1=L2 � �2

relative to the double y-derivative. In dimensionfull variables we have �xp � �U 2.
The second NS equation then leads to a similar estimate of the transverse variation in

pressure,

�yp �
1

L2
C
�

L
� �2: (13)

This reflects the usual stiffness of the pressure in a boundary layer, so that we may assume
that the pressure only depends on x, or p D p.x/ up to errors of relative order �2.

The first NS-equation now becomes the Prandtl equation (with relative errors of order �2)

vxrxvx C vyryvx D G C �r
2
yvx ; (14)

where the pressure gradient, G.x/ D �p0.x/=�, only depends on x.
For isolated boundary layers one uses Bernoulli’s theorem to identifyG.x/with u.x/u0.x/

where u.x/ is the slip-flow velocity, but that is not possible here because the boundary layers
from the two sides merge at the center of the channel with a so far unknown central velocity,
u.x/ D vx.x; 0/. Setting y D 0 in the Prandtl equation above, we get

G D urxu � �
�
r
2
yvx

�
yD0

: (15)

Since curvature of the central velocity profile is always non-zero, the second term is always
non-vanishing, so the conventional slip-flow expression is clearly invalid here.

Global mass conservation
From the continuity equation we get after integrating with respect to y,

vy D �rx

Z y

0

vx.x; y
0/ dy0: (16)
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Figure 1. Left: Velocity profiles as functions of y for ˇ D 10�6; 2:5; 4; 6; 10; 100. One notices
the lack of a small dip in the middle of each curve, as shown by simulations (page PCM-265). The
approximation is the least trustworthy close to the entrance. Right: Central flow velocity as a function
of 1=ˇ. It reaches 99% of the terminal value (3/2) for ˇ D ˇ99 D 0:787076, or 1=ˇ99 D 1:27052

(dotted line).

Since vy D 0 at y D 1 it follows that
R 1
0
vx.x; y/ dy is independent of x. Its value can

trivially be calculated for x D 0 where vx D 1, so that

Z 1

0

vx.x; y/ dy D 1; (17)

It expresses mass conservation, or equivalently that the average velocity is always 1.

Global momentum balance

Combining the Prandtl equation and the continuity equation we get

rx.v
2
x/Cry.vxvy/ D G C �r

2
yvx ; (18)

and integrating both sides over the interval 0 < y < 1 we find, again using the boundary
conditions,

rx

Z 1

0

v2xdy D G C �
�
ryvx

�
yD1

; (19)

which expresses exact global momentum balance.

3 Approximative theory

It is not possible to solve the Prandtl equations as they stand, but we shall now obtain an
approximative solution. Such a solution will a priori not satisfy the conditions of global
mass conservation and momentum balance. But if these conditions are broken, the solution
is physically worthless. So mass conservation and momentum balance must be imposed on
approximative solution to secure the internal consistency.
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To obtain an approximation to the solution we first define the function

H D vxrxvx C vyryvx � �ˇ
2vx ; (20)

where ˇ D ˇ.x/ is an unknown function of x. We shall with Langhaar assume that H is
essentially independent of y, that is,ryH � 0. After finding the solution, we shall investigate
to which extent this condition is fulfilled2.

With this notation Prandtl’s equation (14) may be written

�r2yvx D �ˇ
2vx CH �G: (21)

For H D H.x/ the solution, which must be symmetric under y ! �y, becomes

vx D
G �H

�ˇ2
C C coshˇy (22)

where C is an arbitrary function of x. It is determined by the boundary condition vx D 0 for
y D 1, and we find

vx D
G �H

�ˇ2

�
1 �

coshˇy
coshˇ

�
: (23)

Imposing mass conservation (17), we get

G �H D
�ˇ2

1 � tanhˇ=ˇ
; (24)

so that

vx D
1 � coshˇy= coshˇ

1 � tanhˇ=ˇ
: (25)

One may verify that for 0 < y < 1 this expression has the correct boundary value vx ! 1

for ˇ ! 1 (that is for x ! 0), and vx ! 3
2
.1 � y2/ for ˇ ! 0 (that is for x ! 1). The

velocity profiles are shown in Figure 1.
The central velocity is now obtained by setting y D 0,

u D
1 � sechˇ
1 � tanhˇ=ˇ

(26)

where sech D 1= cosh is the hyperbolic secans.

Relation between x and ˇ
What remains is to determine ˇ as a function of x from momentum balance (19). In practice,
it is easier to determine x D x.ˇ/ and then find the inverse.

Eliminating the pressure gradient G by means of (15), momentum balance becomes

rx

�˝
v2x
˛
�
1
2
u2
�
D �

�
ryvx

�
yD1
� �

�
r
2
yvx

�
yD0

(27)

where ˝
v2x
˛
D

Z 1

0

v2xdy (28)

is the average squared velocity along x.
2Various arguments can be given. It is fulfilled for the limiting flow for x !1, which has vx !

3
2
.1 � y2/

and vy ! 0. Provided ˇ.x/! 0 for x !1, we find H ! 0 in this limit. It is also fulfilled everywhere in the
central region as yet untouched by the growing boundary layers, because there vx is flat and depends mainly on x,
while vy � 0. Langhaar actually assumed thatH D 0, but that is, as we shall see, not fulfilled by the solution.
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Figure 2. Central velocity (left) and central gradient (right). The dashed lines are the asymptotic
approximations. The vertical dotted line is the 99% asymptotic point. Notice that the axes have been
dimensionalized.

Differentiating with respect to x through ˇ we obtain

�
dx

dˇ
D �h.ˇ/; h D

f 0.ˇ/

g.ˇ/
(29)

where

f �
˝
v2x
˛
�
1
2
u2 D

3=2

1 � tanhˇ=ˇ
C

sechˇ � 1
.1 � tanhˇ=ˇ/2

(30)

g �
�
r
2
yvx

�
yD0
�
�
ryvx

�
yD1
D ˇ2

�
1 � sechˇ
1 � tanhˇ=ˇ

� 1

�
(31)

It is fairly straightforward to evaluate f 0.ˇ/.
Using that x ! 0 for ˇ !1 we finally obtain the desired function,

�x D

Z 1
ˇ

h.s/ ds; (32)

The integral can only be done numerically. The central velocity and pressure gradients are
plotted in Figure 2.

Entry length
The leading approximations are

h D

8̂̂<̂
:̂
73

700

1

ˇ
CO .ˇ/ .ˇ ! 0/;

1

2ˇ3
CO

�
ˇ�4

�
.ˇ !1/:

(33)

For ˇ ! 0 the asymptotic form is

�x D �
73

700
logˇ C C CO

�
ˇ2
�

.ˇ ! 0/ (34)

where the constant C is determined by numeric integration.
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Figure 3. Error function H=� as a function of y and �x in dimensionless units. Apart from the region
near the entry x � 0 and close to the plates for 0:7 < y < 1, the error function is nearly constant, as
assumed in Equation (20).

The constant C may be expressed as a perfectly convergent integral

C D lim
ˇ!0

�
73

700
logˇ C

Z 1
ˇ

h.s/ ds

�
D

Z 1

0

�
h.s/ �

73

700

1

s

�
ds C

Z 1
1

h.s/ ds

D 0:130515: (35)

Its value is very close to 3
23
D 0:130435.

The entry length is defined as the point where the central velocity has reached 99% of
its terminal value. In the caption of Figure 1R it is determined to be ˇ99 D 0:78707, corre-
sponding to �x99 D 0:157588. The constant in Equation (1) then becomes k99 D �x99=4 D
0:0393971.

If we use the asymptotic approximations for ˇ ! 0

u �
3

2

�
1 �

ˇ2

60

�
; �x � �

73

700
logˇ C

3

23
; (36)

we find instead ˇ99 �
p
0:60 D 0:774597 and �x99 D 0:157071. These values differ from

the numeric values by less than 1%.

Error analysis
Having obtained an approximate solution, we can calculate the value of H from (20). It is
plotted as a function of y and �x in Figure 3. The assumption that H is nearly independent
of y is certainly confirmed, except very close to the rim and the entrance to the pipe. The
calculation of the entrance length nevertheless holds, because it it carried out for y D 0.
Langhaar’s assumption that H D 0 is not fulfilled close to the entry.


