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A semi-infinite pipe of radius a carries an incompressible steady flow with average velocity
U . The entrance length L has been estimated on page PCM-2721 to be of the form

L

2a
� kRe; Re D

2aU

�
; (1)

with k � 1=16 � 0:063 for Re � 1. The goal of the following calculation is to obtain a
better estimate by following Langhaar’s original calculation2 with some improvements.

We first establish the geometry and the exact Navier-Stokes equations, as well as the
symmetries and the boundary conditions. Next we derive Prandtl’s boundary layer equations
for this symmetric three-dimensional system (page PCM-486). Integral relations are derived,
and a certain velocity profile is found, leading to the final result k D 0:057.

1 Navier-Stokes equations
Rotationally invariant pipe flow is defined in the region 0 � z < 1 times 0 � r � a, and
satisfies the continuity equation as well as the radial and longitudinal Navier-Stokes equations,
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where � is the constant density.
Boundary conditions are

vz D U; vr D 0; .z D 0; 0 � r � a/ (5)

vz D 2U.1 � r
2=a2/; vr D 0; .z D1; 0 � r � a/ (6)

rrvz D 0; vr D 0; .0 � z � 1; r D 0/ (7)
vz D 0; vr D 0; .0 � z � 1; r D a/ (8)

Apart from a constant, the boundary conditions on the pressure are determined by these.
Without loss of generality we shall in the following choose units such that

� D U D a D 1 (9)

For Re� 1 eq. (1) implies that L � 1=� � Re up to a numeric factor of order unity.
1The prefix PCM refers to B. Lautrup, Physics of Continuous Matter, Second Edition, Taylor&Francis (2011).
2H. L. Langhaar, Steady flow in the transition length of a straight tube, Journal of Applied Mechanics 64 (1942)

A55–A58.
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2 The Prandtl approximation
In making estimates we note that vz � 1 in the bulk of the flow. Using that rz � 1=L � �
and rr � 1, the continuity equation implies that in the bulk of the flow,

vr � �: (10)

Assuming a long entrance region, L� 1, the radial velocity is always small.
Multiplying the first NS-equation by L leads to the following estimate of the z-variation

in pressure from advection and viscosity

�zp � 1C �L � 1: (11)

We have dropped the double z-derivative in the Laplacian, because it is of order 1=L2 � �2

relative to the double r-derivative. In dimensionfull variables we have �zp � �U 2.
The second NS equation then leads to a similar estimate of the transverse variation in

pressure,

�rp �
1

L2
C
�

L
� �2: (12)

This reflects the usual stiffness of the pressure in a boundary layer, so that we may assume
that the pressure only depends on z, or p D p.z/, up to errors of relative order �2.

The first NS-equation now becomes the Prandtl equation (with relative errors of order �2)

vzrzvz C vrrrvz D G C
�

r
rr .rrrvz/ ; (13)

where the pressure gradient, G.z/ D �p0.z/=�, only depends on z.
For isolated boundary layers one uses Bernoulli’s theorem to identifyG.z/with u.z/u0.z/

where u.z/ is the slip-flow velocity, but that is not possible here because the boundary layers
from the rim of the pipe merge at the center of the channel with a so far unknown central
velocity, u.z/ D vz.z; 0/. Setting r D 0 in the Prandtl equation above, we get

G D urzu � �
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Since curvature of the central velocity profile is always non-zero, the second term is always
non-vanishing, so the conventional slip-flow expression is clearly invalid here.

Global mass conservation
From the continuity equation we get after integrating with respect to r ,

vr D �rz
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vz.z; s/ sds: (15)

Since vr D 0 at r D 1 it follows that
R 1
0
vr .z; r/ rdr is independent of z. Its value can

trivially be calculated for z D 0 where vz D 1, so that

Z 1

0

vx.z; r/ 2rdr D 1; (16)

It clearly expresses mass conservation. Defining the total dischargeQ D
R 1
0
vz2�rdr , it also

expresses that the average velocity is always U � Q=�a2 D 1).
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Figure 1. Left: : Velocity profiles as functions of r for ˇ D 10�6; 2; 3; 4; 6; 10; 100. One notices
the lack of a small dip in the middle of each curve, as shown by simulations (page PCM-265). The
approximation is least trustworthy close to the entrance. Right: The central flow as a function of 1=ˇ.
It reaches 99% of the terminal value (2) for ˇ D ˇ99 D 0:699861, or 1=ˇ99 D 1:42885.

Global momentum balance
Combining the Prandtl equation and the continuity equation we get
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Multiplying this by 2r and integrating both sides over the interval 0 < r < 1 we find, again
using the boundary conditions,

rz

Z 1

0

v2z2rdr D G C 2� Œrrvz �rD1 ; (18)

which expresses exact global momentum balance.

3 Approximative theory
It is not possible to solve the Prandtl equations as they stand, but we shall now obtain an
approximative solution. Such a solution will a priori not satisfy the conditions of global
mass conservation and momentum balance. But if these conditions are broken, the solution
is physically worthless. So mass conservation and momentum balance must be imposed on
approximative solution to secure the internal consistency.

To obtain an approximation to the solution we first define the function

H D vzrzvz C vrrrvz � �ˇ
2vz ; (19)

where ˇ D ˇ.z/ is an unknown function of z. We shall with Langhaar assume that H is
essentially independent of r , that is, rrH � 0. After finding the solution, we shall investigate
to which extent this condition is fulfilled3.

3Various arguments can be given. It is fulfilled for the limiting flow for z ! 1, which has vz ! 2.1 � r2/
and vr ! 0. Provided ˇ.z/! 0 for z !1, we find H ! 0 in this limit. It is also fulfilled everywhere in the
central region as yet untouched by the growing boundary layers, because there vz is flat and depends mainly on z,
while vr � 0. Langhaar actually assumed thatH D 0, but that is, as we shall see, not fulfilled by the solution.
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With this notation Prandtl’s equation (13) may be written
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Provided H only depends on z, the only solution that is regular for r ! 0 is

vz D
G �H

�ˇ2
C CI0.ˇr/ (21)

where In denotes the hyperbolic (or modified) Bessel-function of n’th order, and C is an
arbitrary function of z. C is determined by the boundary condition vz D 0 for r D 1, and we
find

vz D
G �H

�ˇ2

�
1 �

I0.ˇr/

I0.ˇ/

�
: (22)

Imposing mass conservation (16), we get from the standard Bessel relations

G �H D �ˇ2
I0.ˇ/

I2.ˇ/
; (23)

so that

vz D
I0.ˇ/ � I0.ˇr/

I2.ˇ/
: (24)

One may verify that for 0 < y < 1 this expression has the correct boundary value vx ! 1

for ˇ ! 1 (that is for z ! 0), and vz ! 2.1 � r2/ for ˇ ! 0 (that is for z ! 1). The
velocity profiles are shown in Figure 1L.

The central velocity is now obtained by setting r D 0, using that I0.0/ D 1,

u D
I0.ˇ/ � 1

I2.ˇ/
(25)

which is shown in Figure 1R.

Relation between z and ˇ
What remains is to determine ˇ as a function of z from momentum balance (18). In practice,
it is easier to determine z D z.ˇ/ and then find the inverse.

Eliminating the pressure gradient G by means of (14), momentum balance becomes

rz

�˝
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�
D 2� Œrrvz �rD1 � �

�
1

r
rr .rrrvz/

�
rD0

(26)

where

˝
v2z
˛
D
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0

v2z 2rdr (27)

is the average squared velocity along z.
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Figure 2. Central velocity u and pressure gradient G as a functions of z. The dotted line indicates the
99% point. Dimensional units have been reintroduced.

Differentiating with respect to z through ˇ we obtain

�
dz

dˇ
D �h.ˇ/; h D

f 0.ˇ/

g.ˇ/
(28)

where we have taken into account that z is always a decreasing function of ˇ. The numerator
and denominator functions are:
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˝
v2z
˛
�
1
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2 � 2I 21

2I 22
(29)
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� 2 Œrrvz �rD1 D ˇ
2 I0 � 1 � I2

I2
(30)

where I1 is the Bessel function of 1’st order.
The solution is

�z D

Z 1
ˇ

h.s/ ds; (31)

Using this, the central velocity u and central gradient G (from .14/) are plotted in Figure 2 as
functions of z.

Entry length
In the limits the integrand becomes,

h D

8̂<̂
:

5

36ˇ
CO .ˇ/ ˇ ! 0;

1

2ˇ3
CO

�
ˇ�4

�
ˇ !1:

(32)

Clearly the integral has for ˇ ! 0 the asymptotic form

�z D �
5

36
logˇ C C CO

�
ˇ2
�
; (33)

where C is a constant.
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Figure 3. Error function H=� as a function of r and �z in dimensionless units. Apart from the region
near the entry z � 0, close to the rim for 0:7 < r < 1, the error function is nearly constant, as assumed
in Equation (19).

The constant C may be expressed as a perfectly convergent integral

C D lim
ˇ!0

�
5

36
logˇ C

Z 1
ˇ

h.s/ ds

�
D

Z 1

0

�
h.s/ �

5

36s

�
ds C

Z 1
1

h.s/ ds

D 0:174925: (34)

Its value is very close to 7
40
D 0:175.

The entry length is defined as the point where the central velocity has reached 99% of
its terminal value. In Figure 1R it is determined to be ˇ99 D 0:699861, corresponding to
�z99 D 0:226613. The constant in Equation (1) then becomes k99 D �z99=4 D 0:0569939.

If we use the asymptotic approximations for ˇ ! 0

u � 2

�
1 �

ˇ2

48

�
; �z � �

5

36
logˇ C

7

40
; (35)

we find instead ˇ99 �
p
0:48 D 0:69282 and �z99 D 0:22597. These values differ from the

exact numeric values by less than 1%.

Error analysis
Having obtained an approximate solution, we can calculate the value of H from (19). It is
plotted as a function of r and ˇ in Figure 3. The assumption that H is nearly independent of
r is certainly confirmed, except very close to the rim and the entrance to the pipe. Langhaar’s
assumption thatH D 0 is not fulfilled, except far downstream that Poisseuille flow has set in.
The calculation of the entrance length nevertheless holds, because it it carried out for r D 0.


