
Stokes waves
Benny Lautrup
May 11, 2011

In 1847 Stokes published a seminal paper [1] on nonlinear gravity waves that generalize
the linear small-amplitude harmonic waves at constant depth discussed in Section 25.3 at
page CM-424. For many years these Stokes waves stood as the model for nonlinear waves,
even if they today are known to suffer from small frequency instabilities [Mei 1989].

1 Periodic, permanent line waves
Gravity waves in a liquid (“water”) are essentially only interesting for large Reynolds number,
where viscosity plays an insignificant role. Compression plays likewise only a minor role,
when the material velocity in a wave is small compared to the sound velocity in the liquid,
which it normally is. Consequently, the liquid may be assumed to be an incompressible
Euler liquid (see Chapter CM-13). Furthermore, if the waves have been created from water
originally at rest without vorticity, the flow may also be assumed to be irrotational at all times.

Incompressible, inviscid, and irrotational water
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In the two-dimensional flat-Earth
coordinate system, constant grav-
ity points along the negative y-
axis, and the surface of the undis-
turbed sea is at y D 0. The z-axis
points out of the paper.

Under these conditions, the two-dimensional flow in a line wave may be derived from a ve-
locity potential ‰.x; y; t/ that satisfies Laplace’s equation (see page CM-220),

vx D rx‰; vy D ry‰;
�
r
2
x Cr

2
y

�
‰ D 0: (1)

Any solution to the Laplace equation yields a possible two-dimensional flow.
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A fluid particle at the surface
must follow the motion of the sur-
face from time t to time t C ıt .

With constant gravity g0 pointing along the negative y-axis, the undisturbed surface of the
sea corresponds to y D 0. Let the surface of the wave be described by a function y D h.x; t/.
A liquid particle sitting right at the surface (or rather just below) must follow the motion of
the surface. In a small time interval ıt , the particle is displaced horizontally by ıx D vxıt

and vertically ıy D vyıt , so that we must have h.xC ıx; t C ıt/ D h.x; t/C ıy. Expanding
to first order in the small quantities, we get the kinematic surface condition,

@h

@t
C vxrxh D vy for y D h: (2)

The pressure in the liquid is given by Equation (13.34) at page CM-220. At the liquid surface
against vacuum (or air) the pressure must be constant (in the absence of surface tension), and
we get the dynamic surface condition

g0y C
1

2

�
v2x C v

2
y

�
C
@‰

@t
D const for y D h (3)

The constant is rather unimportant, since it can be eliminated by shifting the origin of y.
Finally, we must require that the vy D 0 for y D �d , where d is the constant depth of the

undisturbed ocean.



2 PHYSICS OF CONTINUOUS MATTER

Permanence
A line wave is said to be permanent or stationary if it progresses along the x-axis with un-
changing shape and constant celerity c, such that all surface features move with the same
velocity c. The surface shape can therefore only depend on the combination x�ct , and we ex-
pect that this is also the case for the velocity potential, that is,‰ D ‰.x�ct; y/. We may con-
sequently replace all time derivatives by x-derivatives according to the rule @=@t ! �c@=@x,
and afterwards put t D 0, so that the velocity potential ‰.x; y/ and the derived fields only
depend on x and y. The surface boundary conditions may thus be written

vy D .vx � c/h
0 for y D h; (4) eSWkinematic

where h0 D dh=dx, and

g0h D cvx �
1
2

�
v2x C v

2
y

�
C const; for y D h: (5) eSWdynamic

The bottom condition is as before vy D 0 for y D �d .

Periodicity and symmetry
Stokes also assumed that the waves are periodic with spatial period �,

h.x C �/ D h.x/; ‰.x C �; y/ D ‰.x; y/; (6)

so that the nonlinear waves in this respect are generalizations of the linear ones.-
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Even and odd periodic functions.

The Laplace equation is trivially invariant under a change of sign in x. Because of its
linearity, its solutions may accordingly be classified as symmetric (even) or antisymmetric
(odd) under a change of sign of x. There is, however, no guarantee that a solution satisfying
the nonlinear boundary conditions might not be an asymmetric linear combination of odd and
even velocity potentials. We shall later return to this question, but for now we assume that
‰.x; y/ may be chosen odd in x,

‰.�x; y/ D �‰.x; y/: (7)

The boundary conditions then imply that vx is even and vy odd, and consequently that the
surface height h must be even. Notice that the antisymmetry of ‰.x; y/ also implies that all
even derivatives at x D 0 must vanish. Conversely, all odd derivatives of h.x/ must vanish,
implying that x D 0 is an extremum of h.x/.

Choice of units
The parameters describing periodic line waves are the celerity c, wavelength � (or wavenum-
ber k D 2�=�), depth d , amplitude a, and strength of gravity g0. The only dimensionless
variables are ka, kd , and

G D
g0

kc2
: (8) eSWdispersionG

For general reasons G must be a function of ka and kd (dispersion relation). In the linear
approximation CM-(25.28) we have G D coth kd .

To simplify the formalism, we shall choose units of space and time so that,

k D 1; c D 1: (9)

This implies � D 2� , and that Equation (8) simplifies to g0 D G.



STOKES WAVES 3

Fourier expansion

The periodicity and symmetry permit us to expand the surface height into even Fourier com-
ponents,

h D

1X
nD1

Hn cosnx; (10)

where the Hn may depend on a and d . Although an even function would permit a term
H0, such a term is absent here because of mass conservation in the wave shape, which re-
quires that

R �
��
h.x/ dx D 0. The series converges provided it is square integrable, that is,R �

��
h.x/2 dx D �

P1
nD1H

2
n <1.

The periodicity and oddness of the velocity potential ‰ guarantees likewise that it may
be expanded into odd Fourier components of the form ‰ � fn.y/ sinnx that must sat-
isfy the Laplace equation, which here takes the form f 00n D n2fn. The general solution is
fn D An coshny C Bn sinhny, but since each Fourier component of the vertical velocity
vy � f

0
n.y/ sinnx must vanish for y D �d , we must require f 0n.�d/ D 0, and the solution

becomes fn � coshn.y C d/. In non-dimensional form we may thus write,

‰ D

1X
nD1

‰n
coshn.y C d/

sinhnd
sinnx; (11)

where the ‰n may depend on a and d . The denominator is introduced for later convenience
(see the linear solution CM-(25.29)).

From the velocity potential we derive the velocity field components,

vx D

1X
nD1

n‰n
coshn.y C d/

sinhnd
cosnx; (12)

vy D

1X
nD1

n‰n
sinhn.y C d/

sinhnd
sinnx: (13)

Using trigonometric relations, the y-dependent factors may also be written

fn.y/ �
coshn.y C d/

sinhnd
D sinhny C Cn coshny; (14)

gn.y/ �
sinhn.y C d/

sinhnd
D coshny C Cn sinhny; (15)

where Cn D cothnd contain all the dependence on depth d . Notice that f 0n D ngn and
g0n D nfn.

Truncation

Having solved the field equations and implemented the bottom boundary condition, we must
now apply the surface boundary conditions to determine the unknown coefficients ‰n and
Hn. A natural approximation consists in truncating the infinite series at n D N , that is,
dropping all terms of harmonic order n > N . Here we shall only investigate the linear first
order approximation and the second order nonlinear correction to it.



4 PHYSICS OF CONTINUOUS MATTER

Linear approximation

For N D 1 we have

h D H1 cos x; (16)

and

vx D ‰1f1.y/ cos x; vy D ‰1g1.y/ sin x: (17) eSWlinear

Inserted into the surface boundary condition (4) and (5), we get in the linear approximation
vy D �h

0 and Gh D vx C const for y D 0 (because setting y D h would generate second
order harmonics), and we arrive at

‰1 D H1; GH1 D ‰1C1; (18)

while const D 0 in this approximation. Eliminating ‰1 we obtain

G D C1; or c2 D
g0

kG
D
g0

k
tanh kd (19) eSWcelerity

which is simply the expression CM-(25.28) for the celerity of linear waves. The first-order
coefficient H1 is clearly a free parameter, and usually one defines H1 D ‰1 D a where a is
the linear wave amplitude.

Second order approximation

For N D 2 we have

h D H1 cos x CH2 cos 2x; (20)

and

vx D ‰1f1.y/ cos x C 2‰2f2.y/ cos 2x; (21) eSWvelocities

vy D ‰1g1.y/ sin x C 2‰2g2.y/ sin 2x: (22)

Setting y D h and expanding fn.h/ and gn.h/ in powers of h, we only need to keep the
first-order harmonic term in the first terms and the zeroth-order term (h D 0) in the second.
In other words, for y D h,

vx D ‰1.C1 CH1 cos x/ cos x C 2‰2C2 cos 2x; (23)
vy D ‰1.1C C1H1 cos x/ sin x C 2‰2 sin 2x: (24)

Inserted into the kinematic boundary condition (4), we get

‰1.1C C1H1 cos x/ sin x C 2‰2 sin 2x
D �.�1C‰1C1 cos x/H1 sin x C 2H2 sin 2x;

where all terms of harmonic order 3 and higher have been dropped. Using that sin x cos x D
1
2

sin 2x, we arrive at the equations,

‰1 D H1; ‰2 D H2 �
1

2
C1H

2
1 ; (25) eSWkinematic1

by matching the sin x and sin 2x terms on both sides.
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Finally, the dynamic boundary condition (5) becomes to second harmonic order

G .H1 cos x CH2 cos 2x/ D ‰1.C1 CH1 cos x/ cos x C 2‰2C2 cos 2x

�
1

2

�
.‰1C1 cos x/2 C .‰1 sin x/2

�
C const:

Using that sin2 x D 1
2
.1 � cos 2x/ and cos2 x D 1

2
.1C cos 2x/, and matching the harmonic

terms, we find,

GH1 D ‰1C1; GH2 D 2‰2C2 C
1

2
‰1H1 �

1

4
‰21.C

2
1 � 1/; (26)

where the zeroth-order (constant) terms have been absorbed in the unknown constant.
Eliminating the ‰’s by means of (25), the solution becomes

G D C1; H2 D
C 21 C 4C1C2 � 3

4.2C2 � C1/
H 2
1 ; ‰2 D

3.C 21 � 1/

4.2C2 � C1/
H 2
1 : (27)

Using that C2 D 1
2

�
C1 C C

�1
1

�
, this simplifies to:

G D C1; H2 D
1

4
C1
�
3C 21 � 1

�
H 2
1 ; ‰2 D

3

4
C1
�
C 21 � 1

�
H 2
1 ; (28)

with the celerity again given by (19), and C1 D coth d . Notice thatH1 is again a free variable,
so we shall again put H1 D ‰1 D a where a is the amplitude.

The surface shape becomes in the extremes,

h D a cos x C
1

2
a2 cos 2x for d !1 (deep water); (29)

h D a cos x C
3a2

4d3
cos 2x for d ! 0 (shallow water): (30)

In deep water the corrections to the linear wave can be ignored for a� 1.
In shallow water the condition for ignoring the nonlinear term is that a� d3 (in units of

� D 2�). The dimensionless ratio,

Ur D
a

k2d3
; (31)

is called the Ursell number[2], and the linear approximation is valid for Ur� 1.

Example 1 [Tsunami]: A tsunami proceeds with wavelength � � 500 km in an ocean of
depth d D 4 km. The celerity becomes c � 200 m s�1, or about 700 km h�1. For the linear wave
theory to be valid we must have a� k2d3 D 10m, which is satisfied for a D 1m, corresponding
to Ur D 0:1. One should note that there are, however, nonlinear secular changes to the wave shape
taking place over very long distances that may become important.

Higher order approximations

In principle these methods may be used to obtain higher order harmonic corrections to the
linear waves. As the analysis of second harmonics indicates, the calculation of the higher
harmonics are liable to become increasingly complicated. This was also recognized by Stokes,
and in a Supplement to his 1847 paper [1], he carried out a much more elegant series expansion
of deep-water waves to fifth order. In the following section, we shall extend this calculation
to 9’th order.



6 PHYSICS OF CONTINUOUS MATTER

Stokes drift
In the strictly linear approximation, that is, to the first order in the amplitude a, the fluid
particles move in elliptical orbits (see page CM-428). In higher order approximations, this is
no more the case, and we shall see that the fluid particles beside periodic motion also perform
a secular motion. We shall calculate this effect in the Lagrange representation, where the
intuitive meaning is clearest.

A particle starting in .X; Y / at time t D 0 and found at .x; y/ at time t is displaced
horizontally by ux D x�X and vertically by uy D y �Y . The particle velocity components
are then determined from

dux

dt
D vx.X � t C ux ; Y C uy/;

duy

dt
D vy.X � t C ux ; Y C uy/ (32) eSWdisplacementderivatives

To lowest harmonic order we disregard the displacements on the right hand sides and integrate
the velocities (21) to get

ux D ‰1f1.Y / sin.t �X/; uy D ‰1g1.Y / cos.t �X/: (33)

Here the integration constants have been chosen such that the horizontal displacement van-
ishes for t D X and the vertical displacement vanishes at the bottom Y D �d . Thus, to first
harmonic order of approximation a fluid particle moves on an ellipse, which has horizontal
major axis and vertical minor and flattens towards the bottom.

Next, we expand to first order in the displacements on the right-hand side of (32) to get

dux

dt
D vx.X � t; Y /C ux

@vx

@X
C uy

@vx

@Y
; (34)

duy

dt
D vy.X � t; Y /C ux

@vy

@X
C uy

@vy

@Y
: (35)

The leading terms are determined by (21) and the remainder from the lowest order displace-
ments. To second harmonic order we find

dux

dt
D‰1f1.y/ cos.t �X/C 2‰2f2.Y / cos 2.t �X/

C‰21f1.Y /
2 sin2.t �X/C‰21g1.Y /

2 cos2.t �X/: (36)
duy

dt
D�‰1g1.Y / sin.t �X/C 2‰2g2.Y / sin 2.t �X/: (37)

Finally, integrating with respect to t and imposing the boundary conditions mentioned above,
we get

ux D‰1f1.Y / sin.t �X/C
�
‰2f2.y/ �

1
4
‰21

�
f 21 .Y / � g

2
1.Y /

��
sin 2.t �X/

C
1
2
‰21

�
f 21 .y/C g

2
1.y/

�
.t �X/; (38)

uy D‰1g1.Y / cos.t �X/C 2‰2g2.y/ cos 2.t �X/: (39)

The term linear in t � X shows that on top of its second order harmonic motion, the particle
drifts along the x-axis with the Stokes drift velocity, which may be written:

U D 1
2
c.ka/2

cosh 2k.Y C d/
sinh2 kd

: (40)

where we have put back the dimensional constants. For shallow-water waves, this becomes
U � 1

2
c.a=d/2. In the tsunami example above, the drift velocity becomes a measly two

centimeter per hour!
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2 Stokes expansion
Instead of working in “laboratory” coordinates where the waves move with celerity c D 1

along the positive x-axis, it is most convenient to use comoving coordinates in which the
wave surface is static and the flow below is steady.

Transforming the laboratory velocity field to a dimensionless comoving velocity field,

ux D vx � 1; uy D vy ; (41)

the surface boundary conditions (4) and (5) become

uy D uxh
0 for y D h; (42) eSWtop1

and

Gh D �1
2

�
u2x C u

2
y

�
C C for y D h: (43) eSWtop2

where C is a constant and G is gravity when c D k D 1; see Equation (8).
The bottom conditions become

ux ! �1; uy ! 0 for y ! �1 (44)

The first condition simply expresses that the laboratory moves with velocity �1 relative to the
comoving frame.

Conformal transformation
In comoving coordinates the dimensionless velocity potential is denoted �.x; y/, and the
conjugate stream function  .x; y/. These functions satisfy the relations (see page CM-221)

ux D
@�

@x
D
@ 

@y
; uy D

@�

@y
D �

@ 

@x
: (45) eNLconjugatepotentials

Combining the derivatives, we get the Laplace equations,

@2�

@x2
C
@2�

@y2
D 0;

@2 

@x2
C
@2 

@y2
D 0; (46)

expressing, respectively, incompressibility and irrotationality.
Rather than viewing x and y as independent variables, and � D �.x; y/ and D  .x; y/

as dependent, Stokes proposed to view � and  as independent variables, and x D x.�;  /

and y D y.�;  / as dependent. To carry out the transformation from Cartesian coordinates
.x; y/ to the curvilinear coordinates .�;  /, we first solve the differential forms,

d� D uxdx C uydy; d D uxdy � uydx; (47)

and find,

dx D
uxd� � uyd 

u2x C u
2
y

; dy D
uyd� C uxd 

u2x C u
2
y

: (48)

From these we read off
@x

@�
D
@y

@ 
D

ux

u2x C u
2
y

;
@y

@�
D �

@x

@ 
D

uy

u2x C u
2
y

: (49) ePWderivs

Combining the derivatives, we arrive at

@2x

@�2
C
@2x

@ 2
D 0;

@2y

@�2
C
@2y

@ 2
D 0: (50)

Thus, the Cartesian coordinates x and y are also solutions to the Laplace equation in the
curvilinear coordinates � and  .
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Periodicity and symmetry
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Periodicity in � and x. No-
tice that both � and x con-
tinue into the diagonally adjacent
boxes while x C � is truly peri-
odic (dashed) in x.

For periodic line waves with k D 1 and period � D 2� , the dimensionless velocity field must
obey

ux.x C 2�; y/ D ux.x; y/; uy.x C 2�; y/ D uy.x; y/: (51)

But since ux ! �1 for y ! �1, it follows from (45) that � ! �x and  ! �y in this
limit, so that horizontal periodicity along x can only be imposed on � C x and  :

�.x C 2�; y/ D �.x; y/ � 2�;  .x C 2�; y/ D  .x; y/: (52)

Solving these equations for x and y, it follows that, x.�;  /C� and y.�;  / are also periodic
in � with period 2� .

We shall as before require that �.x; y/ is odd in x and  .x; y/ is even,

�.�x; y/ D ��.x; y/;  .�x; y/ D  .x; y/; (53)

which translates into x.�;  / being odd in � and y.�;  / even.
Using the periodicity and oddness we may expand x C � into a sum of harmonic Fourier

components of the form Fn. / sinn�. The Laplace equation requires F 00n . / D n2 , and
using that  !C1 for y ! �1 it follows that Fn D �Ane�n where the coefficients An
are constants. Using the relations @x=@� D @y=@ and @x=@ D �@y=@� to determine y,
we arrive at

x D �� �

1X
nD1

Ane
�n sinn�; y D � C

1X
nD1

Ane
�n cosn�; (54)

where we have defined An D 0 for n < 1 to avoid writing n � 1 in the sums.

Boundary conditions
At the surface of the water, y D h.x/, the stream function  .x; h.x// is constant:

d .x; h.x// D
@ 

@x
C
@ 

@y
h0.x/ D �uy C uxh

0.x/ D 0; (55)

because of the boundary condition (42). Since a constant value of  can be absorbed into the
An, we are free to choose  D 0 at the surface, and we obtain a parametric representation of
the surface,

x.�/ D �� �

1X
nD1

An sinn�; y.�/ D

1X
nD1

An cosn�: (56) eSWimplicit

The wave height h.x/ must satisfy the relation

h.x.�// D y.�/: (57)

for all �.
From (49) we obtain,

S.�/ �

�
@x

@�

�2
C

�
@y

@�

�2 ˇ̌̌̌ˇ
 D0

D
1

u2x C u
2
y

ˇ̌̌̌
ˇ
yDh.x/

; (58)
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so that the dynamic condition (43) may be written:

F D .F CK � 2y.�//S.�/; (59) ePWtop2a

where F D 1=G and K D .2C � 1/F are “constants” (that may depend on the amplitude).
The constant F determines the dispersion relation,

c2 D
g0

k
F.ka/; (60)

expressed in proper dimensional parameters.
The implicit representation (56) of y D h.x/ through � does not guarantee that the aver-

age value of h vanishes. A quick calculation yields the average

h0 D
1

2�

Z �

��

h.x/ dx D
1

2�

Z ��
�

y.�/
dx.�/

d�
d� D

1

2

1X
nD1

nA2n: (61) eSWheight

This will be used to plot the shape of the wave.

Truncation
What remains is to determine the coefficients An. As in the previous section, the boundary
conditions permit us to determine all the An for n � 2 in terms of the first A1 D b. We shall
later find the relation between b and the amplitude a of the first-order harmonic in x. Since

2 cosn� cosm� D cos.nCm/� C cos.n �m/�; (62)
2 sinn� sinm� D cos.n �m/� � cos.nCm/�; (63)

it follows that the productAnAm will be associated with harmonic functions up to order nCm.
Consequently, An can only depend on bn and higher powers, so that we may write

An D

1X
mDn

Anmb
m: (64)

Similarly, we shall put

F D 1C

1X
nD1

Fnb
n; K D

1X
nD1

Knb
n; (65)

where zeroth order values F D 1 and K D 0 have been chosen so that Equation (59) is
fulfilled in zeroth order (with S D 1). It is now “merely” a question of matching powers and
trigonometric functions on both sides of this equation to determine the unknown coefficients.

Truncating the series by dropping all powers higher than bN , we obtain from (59) an
iterative scheme that successively determines the highest order coefficients (FN , KN , and
An;N with n D 1; � � � ; N ) from the lower order coefficients already known. To simplify the
analysis we shall assume that the coefficients Fn andKn are only nonzero for even n whereas
Anm are only nonzero for n and m being either both even or both odd. These assumptions
may be written

Fodd D Kodd D Aeven;odd D Aodd;even D 0; (66)

and will be justified by the solution.
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First order (N D 1)

Defining A1 D b, that is, A11 D 1 and A1;n D 0 for n > 1, we have

x D �� � b sin� CO .b/ ; y D b cos� CO .b/ (67)

Equation (59) us automatically fulfilled (since by assumption F1 D K1 D 0).
From Equation (61), we find the height average

h0 D
1
2
b2 CO

�
b3
�

(68)

Notice that this is of second order, even if the truncation is to first order.

Second order (N D 2)

Evaluating (59) it becomes

1C b2F2 CO
�
b3
�
D 1C b2

�
F2 CK2 C sin2 � � 3 cos2 � C 2A2;2 cos 2�

�
CO

�
b3
�
;

and using trigonometric relations it becomes

1C b2F2 CO
�
b3
�
D 1C b2.F2 CK2 � 1/C 2b

2 .A2;2 � 1/ cos 2� CO
�
b3
�
: (69)

From this we read off K2 D A22 D 1, whereas F2 is not determined (it will be determined in
third order).

Consequently, we have

x D �b sin� � b2 sin 2� CO
�
b3
�
; y D b cos� C b2 cos 2� CO

�
b3
�
; (70)

and

h0 D
1
2
b2 CO

�
b4
�
: (71)

Evidently, all odd powers must vanish: hodd D 0.

Ninth order (N D 9)

The above procedure can be continued to higher orders. In each order of truncation, N , we
only need to determine the constants AN;N , AN�2;N ; : : :, until it breaks off. Expressed in
terms of the An’s, the result is to 9’th order (leaving out the explicit O

�
b10

�
),

A1 D b;

A2 D b
2
C

1
2
b4 C 29

12
b6 C 1123

72
b8;

A3 D
3
2
b3 C 19

12
b5 C 1183

144
b7 C 475367

8640
b9;

A4 D
8
3
b4 C 313

72
b6 C 103727

4320
b8;

A5 D
125
24
b5 C 16603

1440
b7 C 5824751

86400
b9;

A6 D
54
5
b6 C 54473

1800
b8;

A7 D
16807
720

b7 C 23954003
302400

b9;

A8 D
16384
315

b8;

A9 D
531441
4480

b9:

(72)

Stokes himself carried by hand the expansion to 5’th order.
The constants become in the same approximation

F D 1C b2 C 7
2
b4 C 229

12
b6 C 6175

48
b8; (73)

K D b2 C 2b4 C 35
4
b6 C 1903

36
b8; (74)

h0 D
1
2
b2 C b4 C 35

8
b6 C 1903

72
b8: (75)

Notice that K D 2h0.
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Figure 1. Three periods of the truncated wave for N D 9 with ka D 0:43 together with the first-order
wave (dashed). One notices that the nonlinear effects make the wave crests sharper and taller, and the
troughs wider and shallower.

Explicit wave form

For general reasons the wave must take the symmetric form

h D h0 C

1X
nD1

Hn cosnx; (76)

as a function of x. The coefficients Hn must like the An be of the form

Hn D

1X
mDn

Hnmb
m (77)

with Heven;odd D Hodd;even D 0.
These coefficients are obtained successively in the same iterative procedure that led to the

An, with the result

H1 D b C
9

8
b3 C

769

192
b5 C

201457

9216
b7 C

325514563

2211840
b9;

H2 D
1

2
b2 C

11

6
b4 C

463

48
b6 C

1259

20
b8;

H3 D
3

8
b3 C

315

128
b5 C

85563

5120
b7 C

5101251

40960
b9;

H4 D
1

3
b4 C

577

180
b6 C

57703

2160
b8;

H5 D
125

384
b5 C

38269

9216
b7 C

318219347

7741440
b9;

H6 D
27

80
b6 C

30141

5600
b8;

H7 D
16807

46080
b7 C

51557203

7372800
b9;

H8 D
128

315
b8;

H9 D
531441

1146880
b9:

(78)

Finally we want to express b in terms of the lowest order harmonic amplitude a D H1.
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Solving for b we find

b D a �
3

8
a3 �

5

24
a5 �

26713

9216
a7 �

25971763

2211840
a9; (79)

which when inserted into the H ’s yield

H1 D a;

H2 D
1

2
a2 C

17

24
a4 C

233

128
a6 C

348851

46080
a8;

H3 D
3

8
a3 C

153

128
a5 C

10389

2560
a7 C

747697

40960
a9;

H4 D
1

3
a4 C

307

180
a6 C

31667

4320
a8;

H5 D
125

384
a5 C

10697

4608
a7 C

47169331

3870720
a9;

H6 D
27

80
a6 C

34767

11200
a8;

H7 D
16807

46080
a7 C

30380383

=7372800
a9;

H8 D
128

315
a8;

H9 D
531441

1146880
a9:

(80)

The 9’th order wave shape is shown in Figure 1 for a D 0:43.
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