
Problem 20.3

December 16, 2004

Problem 20.3 on p. 290 and its answer on p. 575 should be replaced by the following two
related problems.

Problems

∗ 20.3 Consider an arbitrary time-dependent orthogonal matrix AAA(t) = {Aij(t)}. Show
that there exists a rotation vector Ω(t) = {Ωi(t)} such that

ȦAA = −AAA×Ω or Ȧij = −
∑

kl

εjklAikΩl (20.39)

and determine the form of Ω.

∗ 20.4 In an inertial Cartesian system the coordinates of a point are denoted x′ whereas
in a generally non-inertial moving Cartesian system the coordinates of the same point are
denoted x. In the inertial system the motion of the non-inertial system is described by
the time-dependent coordinates of its origin c(t) and basis vectors ai(t).

(a) Show that the instantaneous relation between the two sets of coordinates is,

x = AAA(t) · (x′ − c(t)) . (20.40)

where Aij = (ai)j is the orthogonal transformation matrix.
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The moving coordinate
system is in general ac-
celerated relative to the
inertial frame.

(b) Show that the velocity ẋ in the moving system is

ẋ = AAA · (ẋ′ − ċ)−Ω× x (20.41)

where Ω = AAA ·Ω′ is the rotation vector Ω′ in the inertial system projected onto the axes
of the moving system (Hint: use problem 20.3).

(c) Show that Newton’s second law in the moving system becomes

mẍ = f −mq −mΩ̇× x− 2mΩ× ẋ−mΩ× (Ω× x) (20.42)

where q(t) = AAA(t) · c̈(t) is the acceleration of the origin of the moving system projected
on the axes of the moving system. This is necessary because a constant acceleration of
the moving frame in the inertial system must lead to a rotating acceleration vector for
the inertial system seen from the moving frame.
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Answers

20.3 Orthogonality implies that
∑

k AikAjk =
∑

k AkiAkj = δij . Differentiating the
last after time we get

∑
k ȦkiAkj +

∑
k AkiȦkj = 0. This shows that the matrix Ωij =∑

k AkiȦkj is antisymmetric Ωij = −Ωji so that we may put Ωij =
∑

k εijkΩk. Using
again orthogonality we find Ȧij =

∑
m δimȦmj =

∑
mk AikAmkȦmj =

∑
k AikΩkj =∑

kl AikεkjlΩl = −∑
kl AikεjklΩl.

20.4 (a) Follows along the same lines as on p. 21 (with primed and unprimed variables
interchanged).

(b) Differentiating after time the velocity becomes

ẋ = AAA · (ẋ′ − ċ) + ȦAA · (x′ − c)

The second term is now rewritten using problem 20.3 with the rotation vector Ω′ in the
inertial system,

ȦAA · (x′ − c) = −AAA×Ω′ · (x′ − c) = −AAA · (Ω′ × (x′ − c))
= −(AAA ·Ω′)×AAA · (x′ − c) = −Ω× x

In the next to the last step we assumed that detAAA = 1 such that the transformed cross
product becomes the cross product of the transformed vectors.

(c) Differentiate once more after time and repeat the above steps to get the acceleration
in the moving system

ẍ = AAA · (ẍ′ − c̈) + ȦAA · (ẋ′ − ċ)− Ω̇× x−Ω× ẋ

= AAA · (ẍ′ − c̈)−AAA×Ω′ · (ẋ′ − ċ)− Ω̇× x−Ω× ẋ

= AAA · (ẍ′ − c̈)−Ω× (ẋ + Ω× x)− Ω̇× x−Ω× ẋ

= AAA · (ẍ′ − c̈)− Ω̇× x− 2Ω× ẋ−Ω× (Ω× x)

Finally using Newton’s second law in the inertial system, mẍ′ = f ′, and defining f = AAA·f ′
we get (20.42).
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