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The force of gravity determines to a large extent the way we live. It is certainly the force
about which we have the best intuitive understanding. We learn the hard way to rise against it
as small children, to keep it at bay as adults, only to be brought down by it in the end.

Newton gave us the theory of gravity and the mathematics to deal with it. In a world where
things only seem to get done by push and pull, man suddenly had to accept that the Earth
could act on the distant Moon—and the Moon back on Earth. After Newton everybody had
to suppress a feeling of horror for action at a distance and accept that gravity instantaneously
could jump across the emptiness of space and tug at distant bodies. It took more than two
centuries and the genius of Einstein to undo this learning. There is no action at a distance.
As we understand it today, gravity is mediated by a field which emerges from massive bodies
and in the manner of light takes time to travel through a distance. If the Sun were suddenly to
blink out of existence, it would take eight long minutes before daylight was switched off and
the Earth set free in space.

In this chapter we shall study the interplay between mass and the Newtonian field of
gravity, and derive the equations governing this field and its interactions with matter. Some
basic knowledge of gravity is assumed in advance, and the motivation behind this chapter is
mainly to gain familiarity with the methods of field calculus in the comfortable environment
of Newtonian gravity.

1 Mass density
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The volume dV occupied by a
material particle may take any
shape, here cubical. The nominal
position of the particle x is the
center of mass.

In the continuum approximation the mass density is a field, �.x/, assumed to exist everywhere
in space. If there is no mass in a region, the mass density is simply set to zero there. Knowing
this field, we may calculate the mass of a material particle occupying a small volume dV near
the point x,

dM D �.x/ dV: (1)

Although not made explicit here, the density may depend on time. We shall also permit
ourselves to suppress the space variable x and just write dM D � dV , whenever such notation
is unambiguous.

Even if we shall usually think of the mass density field as varying smoothly throughout
space, it is sometimes necessary to allow for discontinuous boundaries in material bodies.
Often such discontinuities are “real” in the sense that the transition between different materials
takes place on the molecular scale, for example between two bodies that touch each other. In
the plot of the mass density of the Earth (Figure 1), the transition between core and mantle is
for our purposes best described by a discontinuity, even if the actual transition zone is known
to be quite broad [1].
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Figure 1. The mass density of the Earth as a function of distance r from the center with the surface
at r D 6371 km (from the standard Earth model CM-[Lide 1996]). There is a sharp break, called the
Gutenberg discontinuity, at the transition between the liquid iron core and the solid stone mantle at
r D 3485 km. The broken lines indicate the average densities in the core (10:9 g cm�3) and in the
mantle (4:5 g cm�3). The drop in density from core to mantle is in fact larger than the drop in density
at the surface of the Earth.

Total mass of a body
The mass density is a local quantity, a field defined in every point of space (and at every
instant of time). In continuum physics the material contained in any volume may be viewed
as a “body”, and the total mass of a body with volume V is obtained by integrating the mass
density over the volume,

M D

Z
V

dM D

Z
V

�.x/ dV D lim
N!1

NX
nD1

�.xn/dVn: (2)

As shown by the last expression, the integral should physically be understood in the Rieman-
nian sense as the limit of a sum over a huge number N of tiny material particles, each having
a volume dVn near xn and together filling out the volume V . The integral sign

R
is in fact

a stylized version of the letter S (for “sum”). The shape of each individual volume dVn and
the precise position of its “anchor point” xn is unimportant as long as the density is a smooth
function (see the discussion in section 1.2). If the density depends on time, or if the volume
changes shape and size with time, the total mass will also depend on time.
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dV

The total mass in a volume is
obtained by integrating (“sum-
ming”) over all material particles
in the volume. .

Center of mass
The center of mass of a body is naturally calculated by averaging the position x over the
masses of all material particles,

xM D
1

M

Z
V

x dM D
1

M

Z
V

x �.x/ dV: (3)

In the Newtonian mechanics of particles and stiff bodies, the center of mass of a body plays
an important role, because it moves like a point particle under the influence of the total force
acting on the body (see Appendix CM-A). This is in principle also true in continuum me-
chanics but is not nearly as useful because the shape of a body may change drastically over
longer time-spans. Think for example of a bucket of oil thrown into a waterfall. It would be
physically meaningless to speak about a well-defined “body of oil” and its center of mass at
much later times.
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2 Newton’s law of gravity
In his Principia from 1687 (see figure CM-1.4) Isaac Newton concluded that the universal
gravitational attraction between the Sun and the planets as well as between the Earth and the
Moon had to act along the line between these objects and vary inversely with the square of
the distance between them. The distances between the astronomical objects were so great
that they could be considered to be point particles within the precision obtainable at that time.
By comparing with the known strength of gravity at the surface of the Earth (the proverbial
apple), Newton could predict the strength of gravity between all bodies.

Gravitational force between point particles
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Geometry and forces of gravity
between two point particles.

To formulate Newton’s law in modern vector language, we place two point particles with
masses m and M in the points x and x0. We denote the position vector of m relative to M
by r D x � x0, and the corresponding unit vector by er D r=r where r D jrj D jx � x0j is
the distance between the particles. The gravitational force exerted on m by M is then in three
different formulations,

F D �G
mM

r2
er D �GmM

r

r3
D �GmM

x � x0

jx � x0j
3
; (4)

where G is the universal gravitational constant that sets the strength of gravity. The negative
sign asserts that gravitation is always attractive. If one interchanges marked and unmarked
quantities, the last expression shows clearly that the force that m exerts on M is of the same
magnitude but opposite direction, F 0 D �F . This is in accordance with Newton’s Third Law
which states that for every action there is an equal and opposite reaction.

The gravitational constant is hard to determine with high precision. The recommended
2006 value, G D 6:67428.67/ � 10�11 N m2 kg�2, has an embarrassingly large uncertainty
of one part in 104 CM-[1]. The inverse square law has been well tested at planetary distances
during the last centuries, but only recently at the submillimeter scale (footnote ??).

Electrostatics versus gravistatics: Electrostatic and “gravistatic” forces seem superficially
alike in that they are both inversely proportional to the square of the distance, which gives them
infinite range. They are in fact the only fundamental forces in nature with macroscopic infinite
range. But where electric charge can be both positive and negative, mass is always positive, im-
plying that there are no “neutral” bodies unaffected by gravity, nor bodies that are repelled by the
gravity of other bodies, also called antigravity. It takes General Relativity CM-[Weinberg 1972] to
see that gravity and electrostatics are very different at a deeper level.

Gravitational force on a point particle
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The gravitational force from two
point particles, M1 and M2, on
a third, m, is simply the sum,
F D F1 C F2, of the forces
from each of them.

In continuum physics bodies are certainly not pointlike but described by extended mass dis-
tributions representing myriads of material particles. A basic empiric property of gravity is
that it is additive, so that the gravitational force on a point particle caused by a collection of
point particles is the sum of the individual forces. For a body with mass distribution �.x/ in
the volume V , we simply add the forces from all the material particles making up the body,

F D �Gm
Z
V

x � x0

jx � x0j
3
�.x0/dV 0; (5)

where dV 0 denotes an infinitesimal volume element near x0.

Relativistic non-additivity: The principle of gravitational additivity is, however, slightly
compromised by the relativistic equivalence of mass and energy,E D mc2. The molecules making
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up a solid or fluid body are attracted to each other by various van der Waals forces of electromag-
netic origin, as discussed in section 1.1. This gives rise to a negative potential energy, besides
which there is also the positive kinetic energy in the thermal vibrations. For solids and fluids the
net binding energy is negative such that the mass of the body is slightly lower than the sum of the
masses of its constituent molecules and thereby diminishes the gravitational force the body exerts
on a point particle. For ordinary matter, for example water, the molecular mass defect is only of
relative magnitude 10�12. Gravitational attraction also binds matter, especially in astronomical
bodies like planets and stars. For a body with mass one kilogram the relative gravitational mass
defect is only about 10�27, whereas for the Earth it is 10�9, for the Sun 10�6, and for a neutron
star a few percent.

3 The field of gravity
Gravity is unique among all forces in nature in being proportional to the mass of the particle
it acts upon. In Newton’s Second Law for a point particle, m Rx D F , the mass can simply
be divided out, so that the equation of motion for any point particle in a gravitational field
becomes the same,

Rx D g.x/: (6)

where the field g.x/ is called the field of gravity, the gravitational field, or just gravity. The
field of a point particle of mass M at x0 is read off from (4),

g.x/ D �G
M

r2
er D �GM

x � x0

jx � x0j
3
; (7)

and that of an extended mass distribution from (5)

g.x/ D �G

Z
V

x � x0

jx � x0j
3
�.x0/dV 0: (8)

The gravitational field is simply the force of gravity on a unit mass point particle.
The gravitational field imparts a common acceleration to all point particles and therefore

also to the center-of-mass of all extended bodies (see appendix CM-A). Given the same initial
conditions — i.e., the same initial position and velocity — all material bodies will follow the
same orbits in a gravitational field. This confirms the law Galileo found empirically, that all
bodies fall in the same way independent of their mass.

Curved space: The identical behavior of all bodies in the field of gravity allows one to look
upon the gravitational field as a property of space and time, rather than simply a vehicle for grav-
itational interaction. As a consequence there is no way we can distinguish between gravitational
forces and the inertial (so-called fictitious) forces experienced in accelerated motion. The indistin-
guishability of gravitional and motional acceleration was raised to a fundamental law, the Princi-
ple of Equivalence, by Einstein in his General Theory of Relativity from 1916, in which gravity is
caused by the geometric curvature of space and time CM-[Weinberg 1972].
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dM D �dV

sx�����*
g dM

The force of gravity on a material
particle of mass dM and volume
dV is dF D g dM D � g dV .

A material particle is always embedded in an environment that exerts other forces than
gravity on it. The part of the force due to gravity on a material particle of mass dM D �dV

at x is,

dF D g.x/ dM D �.x/g.x/dV; (9)

We shall again suppress space (and time) variables and write dF D �g dV when it is unam-
biguous.
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Figure 2. The gravitational field and a few nearly circular equipotential surfaces between Earth and
Moon. You should imagine rotating this picture around the Earth–Moon axis. The drawing is to scale,
except for two regions of 10 times the sizes of the Earth and the Moon that have been cut out for technical
reasons. The field lines are plotted everywhere with a density proportional to the field strength. The
numbers on the frame are coordinates centered on Earth in units of 1000 km. The Moon appears to
have a streaming “mane of hair” because all the field lines ending on its surface have to come in from
spatial infinity and cannot cross the lines of Earth’s field. Note that the equipotential surfaces cross in
the unique point where the gravitational fields of the Earth and Moon cancel each other.

Total force and moment of force
The total gravitational force on a body of volume V , also called the weight of the body, is
obtained by adding the weights of every material particle in the body,

F D
Z
V

g dM D

Z
V

� g dV: (10)

The total gravitational force is a vector which (together with other forces) determines how the
body as a whole moves.
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dV

The moment of gravity for a ma-
terial particle with mass dM D

� dV is dM D x � g dM .

The total gravitational moment of force,

M D

Z
V

x � g dM D

Z
V

x � � g dV: (11)

is a vector which (together with moments of other forces) determines how a body as a whole
rotates around the origin. The total moment depends on the point around which we choose
to calculate it, here the origin. In the terminology of section B.6 the moment is an improper
axial vector. If we instead calculate the moment around another point than the origin of the
coordinate system, say x D c, it becomes

M.c/ D

Z
V

.x � c/ � �g dV DM � c �F : (12)

This shows that the total moment is independent of the choice of origin of the coordinate
system if (and only if) the total force vanishes.
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Constant gravity
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The flat-earth coordinate system.

At the surface of the Earth, it is often convenient to employ a “flat-earth” coordinate system
with vertical z-axis and a constant gravitational field of the form g.x/ D g0 D .0; 0;�g0/

where g0 is a positive constant. The flat-earth approximation can of course only be meaningful
for regions that are so small that the deviation from flatness due to Earth’s spherical shape is
insignificant. At the surface of Earth, the magnitude of gravity is roughly equal to standard
gravity, defined by convention to be exactly 9:80665 m s�2 with no uncertainty CM-[1].

Variations in gravity: The actual local gravitational acceleration at the surface of the Earth
depends on many factors, for example latitude, nearby mass concentrations, and the positions of
the Moon and Sun. The variations in the local gravitational acceleration has been determined with
a precision of 3 � 10�9 in an experiment using atom interferometry CM-[PCC99]. Galileo’s law
was verified in the same experiment to within 7 � 10�9 by comparing the measured values of
the gravitational acceleration for a macroscopic body and for a cesium atom, in effect a modern
version of Galilei’s famous “leaning tower of Pisa” experiment.
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In a constant gravitational field
g0, the weight of a body may
be viewed as concentrated at the
position of the center of mass,
xM.

In constant gravity, the weight of a body (10) becomes the familiar

F D
Z
V

� g0 dV D

�Z
V

� dV

�
g0 DMg0; (13)

where M is the total mass (2). The moment of gravity becomes,

M D

Z
V

x � �g0 dV D

�Z
V

� x dV

�
� g0 D xM �Mg0: (14)

where xM is the center of mass (3). This shows that in constant gravity, the total force of
gravity as well as its moment is the same as that of a point particle with mass equal to the
total mass of the body, situated at the center of mass. Evidently, the moment of gravity in a
constant field vanishes if calculated with respect to the center of mass.

Visualizing gravity
A visual impression of the gravitational field may be given by a picture of the field lines,
defined to be families of curves that at a given instant t0 have the gravitational field as tangent
(see figure 2). This means that the curves are solutions to the first-order vector differential
equation

dx

ds
D g.x; t0/; (15)

where s is a running parameter along the curve. This parameter is not the time, but has
dimension of time squared because g has dimension of length per unit of time squared. The
solutions are of the form x D x.s;x0; t0/ with x0 being the starting point at s D 0. The field
lines form an instantaneous picture of the field at time t0, and cannot be directly related to
particle orbits. A planet may, for example, move in a nearly circular orbit which is everywhere
orthogonal to the field lines.

. ............ ...............
.................

...................
......................

..................................

...................................

.....................................

........................................

.............................................

............................................

..........................................

s����>
s���
�7

Field lines are everywhere tan-
gent to the instantaneous field.

Field lines have the very important property that they can never cross. For if two field
lines crossed in a point x, then by (15) there would have to be two different values of the
gravitational field at the same point, and that is impossible (except when the field vanishes,
as it does in one point of figure 2). As will be shown below all gravitational field lines have
to come in from infinity and end on masses, and we shall also see that field lines do not form
closed loops.
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4 Gravitational flux
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All normals to an oriented open
surface must have a consistent
orientation, meaning that they
point to the same side of the sur-
face. The perimeter curveC must
be oriented in the same way as
the surface, here by means of the
right-hand rule.

Gravitational flux is a measure of how much gravity “streams” through an oriented surface S
of any shape. It is defined by the surface integralZ

S

g.x/ � dS D lim
N!1

NX
nD1

g.xn/ � dSn: (16)

As previously discussed on page CM-614, the integral should be understood as the limit of a
huge sum over tiny planar patches of the surface, called surface elements, each being repre-
sented by an area vector dS which is orthogonal to the surface and has length dS D jdS j
equal to the area of the patch. There is nothing intrinsic in the surface which tells us the
direction of the surface element (in the language of section CM-B.6 we would say that the
surface element is an axial vector). Having made a choice, all surface elements are required
to be oriented to the same side of the surface.

Flux and solid angle
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The solid angle � subtended by
the ball of ice in an ice-cream
cone seen from its tip P equals
the area of its “shadow” on the
unit sphere centered at P .

There is an interesting and important relation between the gravitational flux from a point mass
through a surface, and the solid angle subtended by the surface as observed from the position
of the point mass. The solid angle subtended by any object seen from a given observation
point is defined as the area that the object projects on the surface of a unit sphere centered at
this point. According to this definition, the total solid angle of any convex object observed
from anywhere inside its volume is equal to the area 4� of the unit sphere.

The infinitesimal solid angle d� subtended by a surface element dS near x as seen from
the point x0, is obtained in two steps. First the area of the surface element orthogonal to the
line-of-sight is calculated by projecting the area vector dS on the direction er D r=r of the
relative position vector r D x � x0. Next the projected area is scaled to the unit sphere by
dividing with r2,

d� D
er � dS

r2
: (17)

Surprisingly, this is of the same functional form as the gravitational field (7) of a point particle,
allowing us elegantly to express the contribution to the gravitational flux from the surface
element as,

g � dS D �GMd�:

This result is quite general and is valid for any position x0 of the point mass, as long as the
solid angle is calculated from that position. Notice that the solid angle d� can be negative if
the observation point lies in front of the surface element rather than behind it. In the margin
figure the solid angle is actually positive. t

x0
.
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The solid angle subtended by a
surface element near x seen from
the point x0 equals the projection
of the surface element on the di-
rection er of the relative position
vector, divided by the square of
its length r D

ˇ̌
x � x0

ˇ̌
.

Integrating over the surface S we obtain

Z
S

g � dS D �GM� (18)

where� is the solid angle that S subtends when observed from the position of the point mass.
If the surface is convoluted, the line-of-sight from the point mass to a surface element may
cross the surface more than once. Each time it crosses, the sign of the contribution to the solid
angle will change, such that it cancels the preceding contribution. We shall now see how this
works out for a closed surface.
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Gauss’ law
Consider now a closed convex surface containing the point mass M somewhere in the en-
closed volume. All the little solid angles add up to 4� because the line-of-sight from the
particle in any direction crosses the convex surface exactly once. If, on the other hand, the
surface does not contain the point mass, the line-of-sight from the particle will always cross
the surface twice. The two contributions to the flux will then cancel because the solid an-
gles have the same magnitudes but opposite signs (since all normals are directed out of the
volume). In other words, for any point mass M with position x0 we have,I

S

g � dS D

(
�4�GM for x0 2 V
0 otherwise:

(19)

The circle through the surface integral on the left merely signals that the surface is closed.
This result is, in fact, valid for any orientable closed surface, convex or not. For a convoluted
surface, the line-of-sight from the inside will always cross the surface an odd number of
times, and all the contributions along the line-of-sight cancel each other, except for one. If
the particle is outside the volume the line-of-sight will cross an even number of times and all
contributions cancel. The conclusion is that the above equation holds in full generality.
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The lines of sight from a point in-
side a convex surface crosses the
surface once, whereas they cross
twice if the mass is outside.

Finally, adding together the contributions from all the material particles in the volume V
enclosed by the surface S , we get the global form of Gauss’ law,

I
S

g � dS D �4�G

Z
V

� dV; (20)

where the integral on the right hand side is the total mass contained in the volume V .
Gauss’ theorem CM-(C.15) allows us to convert the integral on the left hand side into a

volume integral, such that
R
V

r � g dV D �4�G
R
V
� dV for all volumes V . Letting the

volume shrink down to nothing around the point x, it follows that the integrands must be
equal for all x, and we obtain the local form of Gauss’ law,

r � g D �4�G�: (21)

It is a partial differential equation for g without reference to any surface or volume, and is
one of the two fundamental field equations for gravity. We shall return to these equations in
section 6.

Field of a spherical bodyr
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Spherical planet with radius a.
Gauss’ law can be used to calcu-
late the field on any sphere inside
or outside the planet (dashed).

Except for spherically symmetric bodies, like planets and stars, the global form is not very
useful in practice. The mass distribution �.r/ of a spherically symmetric body is only a
function of the distance r D jxj from its center, which is here chosen to be at the origin
of the coordinate system. Because of the spherical symmetry, the gravitational field must
everywhere be directed radially away from the center,

g.x/ D g.r/ er ; (22)

where er D x=r is the radial unit vector and g.r/ is a scalar function of r .
Let us choose the volume in the form of a concentric sphere with radius r . The right-hand

side of Gauss’ global law then becomes �4�GM.r/ where

M.r/ D

Z
s�r

�.s/ dV D

Z r

0

�.s/4�s2 ds: (23)

is total mass inside the sphere.
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Figure 3. The strength of gravity�g.r/ in the core and mantle as well as outside the Earth as a function
of distance from the center. The solid curve is obtained by numerical integration over the density data
used in figure 1. The strength of gravity grows roughly linearly from the center to the core/mantle
boundary at r D 3485 km, and decreases slightly in the mantle due to the sharp drop in mass density at
the boundary. The dotted dropping line is the core field itself. The dashed lines are obtained from the
two-layer model of the Earth (problem 5).

The surface elements on the sphere are everywhere pointing radially outwards, dS D
er dS , so that g.x/ � dS D g.r/dS . Since g.r/ is constant on the spherical surface, it goes
outside the integral on the left-hand side of Gauss’ law which becomes 4�r2g.r/, so that

g.r/ D �G
M.r/

r2
: (24)

In figure 3 the value of �g.r/ is plotted for the Earth as a function of the radial distance. One
notes the surprising fact that the strength of gravity is actually larger (by about 9%) at the
core-mantle boundary than on the surface. This is caused by the heavy iron core of the earth
with a mass density nearly three times larger than in the mantle.

It follows from (24) that in the vacuum outside a spherical mass distribution where M.r/
equals the total mass, the field is exactly the same as that of a point particle at the center with
mass equal to the total mass of the body. Although as we shall see below the field at great
distances from an arbitrary body is always approximately that of a point particle, we learn that
the field is of this form everywhere around a perfectly spherical body. There are no near-field
corrections to the gravitational field of a spherical body. Without this wonderful property,
Newton could never have related the strength of gravity at the surface of the Earth—iconized
by the fall of an apple—to the strength of gravity in the Moon’s orbit.
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The strength of gravity for a
planet with constant density as a
function of distance from the cen-
ter. Gravity is maximal at the sur-
face.

Example 1 [Spherical planet with constant density]: For a spherical planet with radius
a and density function

�.r/ D

(
�0 for r < a;
0 for r > a;

(25)

the mass function becomes

M.r/ D
4�

3
�0

(
r3 for r < a;
a3 for r > a:

(26)
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The strength of gravity is then according to (24) found to be,

g.r/ D �
4�

3
G�0

(
r for r < a;
a3=r2 for r > a:

(27)

Inside the planet, the field rises linearly with the distance from the center. In figure 3 this is seen
to be quite well fulfilled for the core of the Earth, but certainly not for the mantle.

5 Gravitational potential

Although the field of gravity is a vector field with three components, there is really only
one functional degree of freedom underlying the field, namely the mass density field. The
relationship between gravity and density, expressed through the integral (8), is non-local.
This means that the gravitational field in a point x depends on the mass density in points x0

that in principle may be arbitrarily far away.
Even if one cannot get rid of the non-locality, one can avoid having a three-to-one rela-

tionship by defining a new scalar field ˆ.x/, called the gravitational potential, also attributed
to Gauss (1840). The potential is, as we shall see below, also non-locally related to the mass
density, but the gravitational field itself can be calculated locally as minus the gradient (C.2)
of the potential,

g.x/ D �rˆ.x/ D �

�
@ˆ

@x
;
@ˆ

@y
;
@ˆ

@z

�
: (28)

Due to the differentiation, the potential is only defined up to addition of an arbitrary constant.
For a bounded mass distribution, this constant is normally fixed by requiring the potential to
vanish at spatial infinity. We shall see below that the potential ˆ.x/ is in fact the potential
energy of a unit mass particle in the point x.

Potential of a point mass

To find an expression for the potential of a point mass, we first calculate the gradient of the
distance r D jx � x0j with x0 held fixed,

rr �
@r

@x
D

1

2r

@
�
r2
�

@x
D

1

2r

@
�
.x � x0/2

�
@x

D
x � x0

r
D er : (29)

The gradient of the radial distance equals the unit vector in the radial direction.
The gradient of 1=r can now be calculated using the chain rule,

r

�
1

r

�
D �

1

r2
rr D �

er

r2
D �

x � x0

jx � x0j
3
:

Comparing with the field of a point mass (7), we conclude that we can write g in the form
(28) with

ˆ.x/ D �G
M

r
D �G

M

jx � x0j
: (30)

This is obviously the gravitational potential of a point mass M situated in x0.
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Potential of a mass distribution
By appealing to the additivity of gravity or by direct comparison with the field (8) from an
extended body, the potential of a bounded mass distribution (a finite body) becomes,

ˆ.x/ D �G

Z
V

�.x0/

jx � x0j
dV 0: (31)

Since the mass density is always positive, the gravitational potential is always negative, pro-
vided (as here) the arbitrary constant is chosen such that the potential vanishes at infinite
spatial distance.

The gravitational potential may be visualized by means of surfaces of constant potential,
ˆ.x/ D const, called equipotential surfaces. The field of gravity, and thus the field lines, are
always orthogonal to the equipotential surfaces, and if they are plotted with constant potential
difference, the strength of the field will be inversely proportional to the distances between
them. A few equipotential surfaces have been shown in the Earth–Moon plot in figure 2.

Asymptotic behavior
At large distances from a finite body the potential becomes that of a point particle situated at
the center of mass xM with mass M equal to the total mass of the body. To show this we put
r D x � xM and r 0 D x0 � xM , so that x � x0 D r � r 0. If a is the maximal distance of
any material particle in the body from the center of mass, we always have r 0 � a, and we can
for r � a to lowest order replace jx � x0j D jr � r 0j by r D jrj in the denominator of (31).
Taking the factor 1=r outside the integral we find as promised,

ˆ.x/ � �G
M

r
for r � a; (32)

whereM is the total mass. A similar result follows for the gravitational field g by calculating
the gradient of the asymptotic potential. The reason for choosing the center of mass, and not
just an arbitrary point in the vicinity of the body, is that the corrections to the potential will
then be of relative order .a=r/2 rather than a=r (see problem 14).

Potential of spherical mass distribution
The potential of a spherical mass distribution can, like the density, only depend on the radial
distance r . Using the chain rule and that rr D er , we get

g.x/ D �rˆ.r/ D �
dˆ.r/

dr
rr D �

dˆ.r/

dr
er ;

and by comparison with (22) we obtain

g.r/ D �
dˆ.r/

dr
: (33)

Conversely, ˆ.r/ can be obtained by integrating g.r/, requiring the potential to vanish at
infinity,

ˆ.r/ D

Z 1
r

g.r/ dr (34)

The potential of the Earth is plotted in figure 4.
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Figure 4. The gravitational potential of the Earth �ˆ.r/ as a function of distance from the center. The
fully drawn curve is obtained by numerically integrating the field of gravity in figure 3. The dotted curve
is the potential of the core alone, and the dashed curve is obtained from the two-layer model (problem
5). The vertical dashed lines indicate the positions of the sharp transitions in the mass density (see
figure 1), which have been smoothed out here by the two integrations leading from the mass density to
the potential.

Example 2 [Planet with constant mass density]: For a planet with constant mass density
we obtain from the above expression and (27),

ˆ.r/ D �
2

3
�G�0

8<:3a
2 � r2 r < a

2
a3

r
r > a:

(35)

One may avoid integrating and instead verify that the derivative �dˆ=dr is indeed identical to
(27) and that the the constant 3a2 has been determined such that the potential is continuous at the
surface r D a.

Gravitational work
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The oriented path C running
from a to b can be viewed as
a sequence of straight curve
elements d`.

According to the laws of Newtonian particle mechanics, the work performed by a force F
acting on a particle that is moved along an infinitesimal straight line from x to x C d` is,

dW D F � d`: (36)

The total work performed by the force when the particle is moved from a to b along the
oriented path C then becomes a curve integral,

W D

Z
C

F � d` D lim
N!1

NX
nD1

F.xn/ � d`n: (37)

As shown on the right, the integral should be understood as the limit of the sum over a huge
number of small straight curve elements d`n near the points xn.

As in real life, it is important to make completely clear who works for whom. When a
particle falls freely in a gravitational field, it is the force of gravity that performs work on
the particle while the particle follows the path of its natural motion and gains kinetic energy.
If we want the particle to follow any other path, we must so to speak “by hand” cancel the
force of gravity with an equal and opposite force, and with the tiniest extra force slowly guide
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the particle along the desired path. Suppose we move a point particle of mass m along a
particular path C from position a to b in a static field of gravity g.x/ where the gravitational
force is F D mg.x/. To keep the particle on this path, we must provide an external force
F 0 D �mg.x/ everywhere along the path to counter the force of gravity mg.x/. Thus the
work we must perform on the particle to move it along any desired path C is

W D

Z
C

F 0 � d` D �m
Z
C

g � d`: (38)

The additional force that we need to guide the particle along the path is supposed to be so small
that its contribution to our work can be ignored. If there is resistance against the particle’s
motion, as there is when moving a body through a viscous fluid, this has to be taken into
account, but more about that later.
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The force of gravity mg must
be canceled by an external force
F 0 D �mg in order to move the
particle slowly along any desired
path between the end points a
and b.

Potential energy
The differential change in the potential along an infinitesimal curve element becomes accord-
ing to Equation CM-(C.3)

dˆ.x/ � ˆ.x C d`/ �ˆ.x/ D d` � rˆ.x/ D �g � d`; (39)

so the work we perform in moving the particle from a to b is obtained by adding differentials,

W D �m

Z
C

g � d` D m

Z
C

dˆ.x/ D mˆ.b/ �mˆ.a/: (40)

The fact that the work is independent of the actual path of the particle shows that gravitational
forces are conservative, and allows us to interpret mˆ.x/ as the potential energy of a particle
of mass m in the field of gravity. Therefore, the potential ˆ.x/ itself is the potential energy
of a unit mass particle.

Place km s�1

Earth surface 11:2

Mars surface 5:0

Moon surface 2:4

Sun surface 617:6

Earth orbit 42:1

Moon orbit 1:4

Neutron star 1 � 105

Black hole 3 � 105

Escape velocities from some
places in the solar system, and a
couple of exotic ones. Note that
escaping from the orbit of Earth
means escaping from the solar
system whereas escaping from
the orbit of the Moon only gets
you free of Earth’s gravity. The
neutron star is assumed to have
solar mass.

Example 3 [Escape velocity]: The total energy of a point particle at x with velocity v is the
sum of its kinetic energy and its potential energy,

E D
1

2
mv2 Cmˆ.x/ (41)

From elementary mechanics we know that the total energy is conserved, that is, constant in time.
Imagine now that a particle situated at the point x is ejected like a ball from a cannon with velocity
v, and arrives at spatial infinity with velocity v1. Conservation of energy tells us that

1
2mv

2
Cmˆ.x/ D 1

2mv
2
1 (42)

becauseˆ.1/ D 0. Sinceˆ.x/ < 0, it follows that the smallest possible start velocity is obtained
by taking v1 D 0, so that the particle will escape if its velocity is equal to or larger than,

vesc D
p
�2ˆ; (43)

also called the escape velocity. Starting with precisely the escape velocity, the particle will arrive
with zero velocity at infinity. Knowing the potential at a point is evidently equivalent to knowing
the escape velocity from that point.

A particularly interesting case occurs when the potential becomes so deep that the escape
velocity equals or surpasses the velocity of light c. In that case the body has turned into a black
hole. Using the potential of a point mass (30) we find that this happens when the radius a of a
spherical mass distribution satisfies

a <
2GM

c2
: (44)

Being a non-relativistic calculation this is of course highly suspect, but accidentally it is exactly
the same as the correct condition obtained in general relativity, where the right-hand side is called
the Schwarzchild radius. For the Earth the Schwarzchild radius is about a centimeter, and for the
Sun three kilometers.
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No closed loops of gravity
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A gravitational field line cannot
form a closed path C .

The work performed in moving a particle around a closed curve C must necessarily vanish
because the curve begins and ends in the same point, a D b. The curve integral of the field of
gravity, called its circulation, around any closed curve C must therefore vanish,I

C

g � d` D 0: (45)

This result tells us that field lines cannot form closed loops, because a field line is defined to
be everywhere tangential to the field, d` / g, implying that the product g � d` / g2 will
always be positive. If a closed gravitational field line could exist, its circulation would always
be positive, but that is impossible.
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A closed curve C D P1 � P2
can be viewed as the difference
between two paths connecting the
same points. The curve element
d` is a small prolongation be-
yond the end point of any path
running from 0 to x.

Conversely, if the curve integral of a field g around any closed curve vanishes, the field
must be a gradient field. To demonstrate this consider the curve integral along some path
P.x/ running from a fixed point, say the origin 0, to an arbitrary point x, and define

ˆP .x/ D �

Z
P.x/

g.x0/ � d`0: (46)

It now follows that this function depends only on the end point x and not on the path.
Two different paths, P1 and P2, connecting the same points form a closed curve C D

P1 � P2, and since the circulation is known to vanish, the two paths must yield the same
result, ˆP1

.x/ D ˆP2
.x/, when taking the orientations into account. One may consequently

leave out the path P in ˆP .x/ and just call the function ˆ.x/. Finally, we must show that
ˆ.x/ indeed has the gradient �g, but that is easy. If we prolong any path from 0 to x by an
arbitrary infinitesimal curve element d` we get the change in the potential dˆ.x/ � ˆ.x C
d`/�ˆ.x/ D �g.x/ � d`. But then Equation CM-(C.3) tells us that rˆ.x/ � d` D �g � d`

for any d`, and that is only possible if rˆ D �g.

6 Field equations for gravity
So far we have established two local equations for the gravitational field. The first is the local
version of Gauss’ law (21), and the second the expression (28) for the gravitational field as the
gradient of the potential. Since the curl CM-(C.5) applied to a gradient always vanishes, we
have obtained the following two partial differential equations for the gravitational field alone,

r � g D �4�G�; r � g D 0: (47)

Given the density � and suitable boundary conditions, these field equations in fact determine
the gravitational field g, although it takes a bit of mathematical work that we shall carry
through below. With this result, we are thus liberated from dealing directly with the cum-
bersome integral in (8) and can employ the existing comprehensive mathematical toolbox for
solving partial differential equations.

Poisson’s equation
It follows from Stokes’ theorem CM-(C.14) that r � g D 0 implies the vanishing of the
circulation (45) and thus guarantees the existence of the potential. Inserting g D �rˆ into
the divergence equation (47), we obtain Poisson’s equation1,

r
2ˆ D 4�G�: (48)

1The field equations for electrostatics in vacuum are of exactly the same form with the mass density � replaced by
the electric charge density �e , the field of gravity g replaced by the electric field E and �4�G replaced by 1=�0.
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where

r
2
D r � r D r

2
x Cr

2
y Cr

2
z D

@2

@x2
C

@2

@y2
C

@2

@z2
: (49)

is the Laplace operator or Laplacian, which plays a major role in all field theory.
Poisson’s equation is a single second order partial differential equation, and it follows

from the derivation that the non-local potential integral over the mass distribution (31) must
be a solution to Poisson’s equation. The linearity of Poisson’s equation guarantees that if ˆ1
is a particular solution then the most general solution is of the form ˆ D ˆ0 Cˆ1 where ˆ0
is an arbitrary solution to Laplace’s equation, r2ˆ0 D 0. The actual solution selected in a
particular problem depends on the boundary conditions. To eliminate the arbitrary solution
to Laplace’s equation in the integral (31), we have imposed the boundary condition that the
potential vanishes at infinity. Poisson’s equation can, however, also be used to find the field in
cases where this boundary condition cannot be imposed.

Example 4 [Universe with constant mass density]: If the universe were uniformly filled
with matter of constant density, �.x/ D �0, we would have to solve r2ˆ D 4�G�0. It is easy to
verify explicitly that a particular solution to this equation is

ˆ D
2

3
�G�0 jxj

2
D
2

3
�G�0

�
x2 C y2 C z2

�
; (50)

yielding the gravitational acceleration field

g D �
4

3
�G�0x: (51)

This gravitational field always points towards the origin of the coordinate system, which is thus
imbued with an unphysical preferred status, not present in the specification of the problem. Al-
though this example may seem farfetched, it was shown in section CM-12.6 that precisely this field
appears naturally in Newtonian cosmology, and that it in fact does not confer a special physical
status to the origin of the coordinate system.

7 Gravitational energy
What is the gravitational energy of a planet or a star? Since the gravitational potential of
a finite body is always negative and grows more negative the closer one gets to the body,
one does not have to perform any work to make such a body grow. It is sufficient to throw
material into the general vicinity of the body, and let gravity do the rest. Consequently, the
total gravitational energy of a body is expected to be negative. Gravity is in this respect
different from most of the other forces we meet in daily life, for example friction, where
we have to perform work to get anything done. It does not cost us anything to make matter
collapse gravitationally, quite the contrary, we get paid for it (usually the payment is heat).
Matter is inherently unstable because of gravity, and this instability lies at the root of galaxy
and star formation CM-[Chandrasekhar 1981] , and thus of everything that is.

Assembly work
In section 5 it was shown that the work required to move a small particle of mass m from
spatial infinity, where the gravitational potential vanishes, to a point x where the potential
takes the value ˆ.x/ is mˆ.x/. After you have done this (negative) work, it is conserved in
the potential energy of the particle. Imagine now that we wish to increase the mass density
by an amount ı�.x/. The total work required to assemble this extra mass by bringing each
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material particle in from spatial infinity is,

ıW D

Z
ˆı� dV (52)

where the integral runs over all space, or at least the volume inside which the mass density is
non-vanishing. The added mass density ı� will also change the potential by a small amount
ıˆ, but its contribution to the work will be of higher order in ı�, and can be disregarded. If
no other energy is added to or removed from the body, the above work will be stored in the
body as gravitational energy.

In an external potential ˆ, not originating from or influenced by the mass distribution
itself, the total work of assembly becomes,

W D

Z
ˆext � dV: (53)

In a constant gravitational field g0 where ˆext D �x � g0 we get,

W D �xM �Mg0; (54)

where xM is the center of mass (3).
The potential energy of a body in a constant external gravitational field is equivalent to

the potential energy of a point particle with the total mass situated at the center of mass.

Gravitational self-energy
When a mass distribution is assembled in its own field, it is intuitively rather clear that each
particle moved in from infinity on average meets only half the field of the final body. Hence
the energy is expected to be only half of what it would be in an external field.

To show that there is indeed such a factor 1
2

we shall employ a frequently used trick. Let
us imagine that we build up the mass distribution � in such a way that at any given time, the
distribution will be �� where 0 < � < 1. Since the potential is linear in the mass density,
the current potential will also be the same fraction �ˆ of the final potential ˆ. Increasing the
fraction of the mass distribution by ı� will then according to (52) cost an amount of work,

ıW D

Z
.�ˆ/.ı� �/ dV D �ı�

Z
ˆ� dV: (55)

Integrating over � from 0 to 1, we get the total amount of work we have to perform in building
up the complete mass distribution from scratch,

W D
1

2

Z
ˆ� dV D �

1

2
G

“
�.x/�.x0/

jx � x0j
dV dV 0: (56)

where we in the last step have introduced the potential (31) to expose the symmetry of the
interaction of the mass density with itself, and that the work is always negative. The total
gravitational self-energy stored in the self-interacting mass distribution equals the assembly
work E D W .

Example 5 [Spherical planet with constant density]: A planet of radius a with constant
density �0 and mass M0 D 4

3�a
3�0 has the potential (35). Carrying out the integral we find the

total gravitational self-energy of the planet,

E D �
3

5

GM 2
0

a
: (57)

In spite of the primitive nature of the model, we shall use this expression for an order of magnitude
estimate of the gravitational energy of a planet or star.
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For the Moon we get E D �1:2 � 1029 J, for Earth E D �2:3 � 1032 J and for the Sun
E D �2:3 � 1041 J. Already in 1854 Hermann Helmholtz proposed that the Sun’s energy pro-
duction stemmed from gravitational energy converted into heat during its assembly and subse-
quent contraction. Since the Sun’s steady energy output is 3:85 � 1026 W, it would only last for
5:9 � 1014 s or merely about 19 million years before the stored energy would have been used
up. The paradox was resolved in the 1930s with the modern understanding of the thermonuclear
processes responsible for the Sun’s energy production.

* Field energy density
Until now we have calculated the total gravitational self-energy from the non-local interaction
of the mass density with itself. It obviously only receives contributions from regions where
the mass density is non-zero. Interestingly, it is possible to transform it into an expression
involving only the field strength g which is non-vanishing over all of space.

We demonstrate this by making use of the nabla-relationship,

r � .ˆg/ D ˆr � g C .g � r/ˆ; (58)

which is most easily proven by writing it explicitly out in coordinates. Integrating over a
volume V and using Gauss’ theorem CM-(C.15) on the left-hand side we obtainI

S

ˆg � dS D

Z
V

r � .ˆg/ dV D �4�G

Z
V

ˆ� dV �

Z
V

g2dV;

where on the right-hand side we have used both rˆ D �g and r � g D �4�G�. If we now
let the volume V expand to include all of space, the left-hand side will tend towards zero for a
spatially bounded mass distribution. For at large distance r we have ˆ � 1=r and g � 1=r2,
so thatˆg � 1=r3, whereas the surface area expands only as r2. The left-hand side thus goes
to zero as 1=r .

In the limit we may rewrite the gravitational energy (56) in the form

E D �
1

8�G

Z
g2 dV; (59)

which explicitly demonstrates that the gravitational self-energy of a body is always negative.
It now seems that the gravitational energy is locally distributed over all of space with an energy
density

� D �
g2

8�G
; (60)

which is non-vanishing even in regions of space completely devoid of matter. At the surface
of the Earth, the gravitational energy density is a whopping �57 gigajoule per cubic meter.

As discussed in section 1.6, the question of whether there is really energy out there in
empty space depends largely on your theoretical frame of mind. In classical Newtonian
physics, rewriting the self-energy as an integral over an energy density is just another mathe-
matical trick.

Example 6 [Spherical planet with constant density]: In the spherical case we use (24)
and obtain

E D �
1

2
G

Z 1
0

M.r/2

r2
dr: (61)

This integral always converges for a body of finite mass, i.e., provided M.r/! M0 for r !1,
even if it has no boundary. Inserting M.r/ D 4

3�r
3�0 for r < a and M0 for r > a, one

immediately recovers (57).
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Problems
1 Show that a satellite moving in a circular orbit around a spherical planet has velocity v D

p
�ˆ,

where ˆ is the gravitational potential in the satellite’s orbit. Calculate the velocity of a satellite moving
at ground level.

2 Arthur C. Clarke proposed (Wireless World, October 1945, pp 305–308) that communication satel-
lites should be put into a circular equatorial orbit with revolution time equal to Earth’s rotation period,
so that the satellites would stay fixed over a point at the equator. Calculate the height of the orbit above
the ground, also taking into account that the Earth circles the Sun in one year.

3 A comet consisting mainly of ice falls to Earth. (a) Estimate the minimum energy released in the
fall per unit of mass. (b) Compare with the estimate of the energy needed to evaporate the comet.

4 A stone is set in free fall from rest through a mine shaft going right through the center of a non-
rotating planet with constant density. (a) Calculate the speed with which the stone passes the center.
(b) Calculate the time it takes to fall to the center.

5 A planet consists of two layers with constant mass density,

�.r/ D

8̂<̂
:
�1 r � a1

�2 a1 < r � a

0 r > a

: (62)

(a) Calculate the strength of gravity and the potential. (b) Show that the strength of gravity at the
boundary between the layers is greater than at the surface when

�1 � �2

�2
>

a2

a1.aC a1/
: (63)

Verify that this is fulfilled for the Earth.

* 6 Show by direct integration in a small spherical volume around the singularity in (8) that it gives a
finite contribution to the integral.

* 7 Show that the mass density is a scalar field.

* 8 Show that the gravitational field is a vector field.

* 9 Show that gravitational field of a spherical body (24) may be derived by integration of (8).

* 10 A spherical planet has mass distribution of the form �.r/ D Ar˛ for r � a. (a) Calculate the
gravitational field strength and the potential inside the planet for this distribution. (b) For what values
of ˛ is the problem solvable with finite planet mass? (c) For what value of ˛ does gravity grow stronger
towards the center?

* 11 An “exponential star” has a mass density � D �0e
�r=a, where �0 is the central mass density and

a is the ‘radius’. Calculate the gravitational field and potential.

* 12 (a) Calculate the gravitational potential and field from a mass distribution shaped like a very thin
line (a model of a cosmic string) of length 2a with uniform mass � per unit of length. (b) Calculate the
behaviour of the potential at infinity orthogonally to the line. (c) Discuss what happens in the limit of
a!1.
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* 13 (a) Write an expression for the gravitational potential from a mass distribution shaped like a very
thin circular plate of radius a with uniform mass � per unit of area (a model of the luminous matter of a
galaxy). (b) Calculate the value of the potential along the central normal of the plate. (c) Calculate its
form far from the disk. (d) What happens for a!1?

14 Show that the corrections to the asymptotic potential (32) are of order .a=r/2.

15 (a) Show that the potential of a spherical mass distribution satisfies

g.r/ D �
dˆ.r/

dr
ˆ.r/ D

Z 1
r

g.r 0/dr 0 (64)

(b) Show that

ˆ.r/ D �G
M.r/

r
� 4�G

Z 1
r

s�.s/ ds: (65)

What is the significance of the last term?

Answers
1 The centripetal acceleration in a circular orbit must equal the force of gravity, v2=r D GM=r2

leading to v D
p
GM=r D

p
�ˆ D

p
g0a2=r . At ground level the velocity becomes v D vesc=

p
2 D

7:9 km s�1 where vesc D 11:2 km s�1 is the escape velocity.

2 Earth’s true rotation period T D T0 � 365=366 is a bit shorter than T0 D 24 hours because the
orbital motion adds one full revolution in one year. Taking v D �r where � D 2�=T we find from the
equality of centripetal acceleration and gravity that

r�2 D g0
a2

r2
: (66)

which solved for r=a yields

r

a
D

� g0

a�2

�1=3
� 6:613: (67)

The orbit height is h D r � a � 5:613a � 35; 800 km.

3

(a) Minimal kinetic energy: 12v
2
esc � 63 .km s/�2 D 63 � 106 J kg�1.

(b) Melting, heating and evaporating ice about� 3:6 � 106 J kg�1.

4 Energy conservation: 12 Pr
2 Cˆ.r/ D ˆ.a/. Use (35).

(a) v0 D � Pr jrD0 D a
p
2.ˆ.a/ �ˆ.0// D a

q
4
3��0G D

p
g0a D 7:9 km s�1.

(b) t0 D
R a
0

drp
2.ˆ.a/ �ˆ.r//

D
R a
0

drq
4
3��0G.a

2 � r2/

D
�a

2v0
D 1267 s.
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5 (a) From (24) we get

g.r/ D �
4

3
�G

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

r�1 r � a1

a31
r2
�1 C

 
r �

a31
r2

!
�2 a1 < r � a

a31�1 C .a
3 � a31/�2

r2
r > a:

(68)

and from (34)

ˆ.r/ D �
2

3
�G

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.3a21 � r
2/�1 C 3.a

2 � a21/�2 r � a1

2
a31
r
�1 C

 
3a2 � r2 � 2

a31
r

!
�2 a1 � r � a

2
a31
r
�1 C 2

a3 � a31
r

�2 r � a:

(69)

(b) It follows from jg.a1/j > jg.a/j, that a1�1 > .a31�1 C .a
3 � a31/�2/=a

2 which may be rewritten
in the form of the inequality (63). For the Earth the left-hand side becomes 1.42 and the right-hand side
1.18, so the inequality is fulfilled.

6 Cut out a small sphere jx0 � xj � a around the point x. Let a be so small that �.x0/ does not vary
appreciably within this sphere. Then we get the contribution to gravity from the small sphere

�g.x/ D �G

Z
jx0�xj�a

x � x0

jx � x0j3
�.x0/ dv0 � �G�.x/

Z
jx0�xj�a

x � x0

jx � x0j3
dv0 D 0:

The last integral vanishes because of the spherical symmetry (it is a vector with no direction to point in).

7 A small volume is invariant under a rotation dV 0 D dV and so is the amount of mass contained in
it, dM 0 D dM . By the definition (1) we have dM 0 D �0.x0/dV 0 and dM D �.x/dV and from that
�0.x0/ D �.x/.

8 By the definition (9) we have dF 0 D g0.x0/ dM 0 and dF D g.x/dM . The force on a small
volume is a vector and transforms according to dF 0 D AAA � dF where AAA is the rotation matrix, and the
mass element is invariant dM 0 D dM . From this we get g0.x0/ D AAA � g.x/.

9 Multiplying (8) by er D x=r and using (22) one gets

g.r/ D �G

Z
jx0j�a

x � .x � x0/

r jx � x0j3
�.x0/ dv0:

Introducing s D
ˇ̌
x0
ˇ̌

and the angle � between x and x0, so that dv0 D 2� sin �d�s2ds, this becomes

g.r/ D �2�G

Z a

0
�.s/s2ds

Z 1

�1
d cos �

r � s cos �

.r2 C s2 � 2rs cos �/
3
2

:

Integrating over u D cos � one obtainsZ 1

�1
du

r � su

.r2 C s2 � 2rsu/
3
2

D �
@

@r

Z 1

�1
du

1
p
r2 C s2 � 2rsu

D
@

@r

"p
r2 C s2 � 2rsu

rs

#1
uD�1

D
@

@r

jr � sj � .r C s/

rs

D� 2
@

@r

8̂<̂
:
1

r
r > s

1

s
r < s

D

8<:
2

r2
r > s

0 r < s

which leads to the desired result (24).
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10

(a) g.r/ D �4�G
A

3C ˛
r1C˛ , ˆ.r/ D 4�G

A

2C ˛

 
r2C˛

3C ˛
� a2C˛

!
.

(b) ˛ > �3.

(c) �3 < ˛ < �1.

11 Use equation (24). Setting u D r=a one gets

M.r/ D

Z r

0
�.s/4�s2 ds D 4��0

Z r

0
e�s=as2 ds D 4��0a

3.2 � .2C 2uC u2/e�u/:

Similarly, using (65) one findsZ 1
r

s�.s/ ds D �0

Z 1
r

se�s=a ds D �0a
2.1C u/e�u

and from this

ˆ D �
4�G�0a

3

r
.2.1 � e�u/ � ue�u/:

12 Line distribution �dv D �dz along the z-axis. Put r D
p
x2 C y2.

(a) Substitute z0 D z � r sinh 

ˆ D �G

Z a

�a

�dz0p
r2 C .z � z0/2

D �G�.sinh�1
z C a

r
� sinh�1

z � a

r
/

where sinh�1 u D log.uC
p
u2 C 1/ is the inverse hyperbolic sine. Then one gets

gz D �
@ˆ

@z
D G�

 
1p

.r2 C .z C a/2
�

1p
.r2 C .z � a/2

!

gr D �
@ˆ

@r
D �G�

1

r

 
z C ap

.r2 C .z C a/2
�

z � ap
.r2 C .z � a/2

!
:

(b) For r !1: ˆ! �G
2a�

r
, gz ! �G2a�

z

r2
, gr ! �G

2a�

r2
.

(c) For a!1: ˆ! �2G� log
a

r
, gz ! �2G�

z

a2
, gr ! �

2G�

r
.

13 Use cylindrical coordinates .r; �; z/.

(a)

ˆ D �G�

Z a

0
sds

Z 2�

0
d�

1p
z2 C r2 C s2 � 2rs cos�

:

(b) ˆ D �2�G�.
p
z2 C a2 � jzj/.

(c) ˆ! �G
��a2

jzj
.

(d) ˆ! �2�G.a � jzj/ for a!1.
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14 Expand to first order in the small quantity r 0 D x0 � xM ,

1

jr � r 0j
�

1
p
r2 � 2r � r 0

�
1

r

 
1C

r � r 0

r2
CO

 
a2

r2

!!
(70)

But
R
V r
0�.x0/dV 0 D 0 and the result follows.

15 (a) Calculate the negative gradient of ˆ.r/ using (29),

g D �rˆ D �
dˆ

dr
rr D �

dˆ

dr
er : (71)

we get g.r/ D �dˆ=dr . Integrate this relation, using that the potential must vanish at infinity.

(b) Perform a partial integration

ˆ.r/ D �G

Z 1
r

M.s/

s2
ds D G

Z 1
r

M.s/ d

�
1

s

�
D �G

M.r/

r
� 4�G

Z 1
r

s�.s/ ds: (72)

The last term secures the smoothness of the potential at the surface of the planet.
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