Continuous matter

The everyday experience of the smoothness of matter is an illusion. Since the beginning of
the twentieth century it has been known with certainty that the material world is composed
of microscopic atoms and molecules, responsible for the macroscopic properties of ordinary
matter. Long before the actual discovery of molecules, chemists had inferred that something
like molecules had to exist, even if they did not know how big they were. Molecules are
small—so small that their existence may be safely disregarded in all our daily doings. Al-
though everybody possessing a powerful microscope will note the irregular Brownian motion
of small particles in a liquid, it took quite some mental effort to move from the everyday
manipulation of objects and recognize that this is a sign that molecules are really there.

Continuum physics deals with the systematic description of matter at length scales that are
large compared to the molecular scale. Most macroscopic length scales occurring in practice
are actually huge in molecular units, typically in the hundreds of millions. This enormous
ratio of scales isolates theories of macroscopic phenomena from the details of the microscopic
molecular world. A general meta-law of physics claims that the physical laws valid at one
length scale are not very sensitive to the details of what happens at much smaller scales.
Without this meta-law, physics would in fact be impossible, because we never know what lies
below our currently deepest level of understanding.

The microscopic world impinges upon the macroscopic almost only through material con-
stants, such as coefficients of elasticity and viscosity, characterizing the interactions between
macroscopic amounts of matter. It is, of course, an important task for the physics of materi-
als to derive the values of these constants, but this task lies outside the realm of continuum
physics. It is nevertheless sometimes instructive to make simple models of the underlying
atomic or molecular structure in order to obtain an understanding of the origin of macroscopic
phenomena and of the limits to the continuum description.

This chapter paints in broad outline the transition from molecules to continuous matter,
or mathematically speaking from point particles to fields. It is emphasized that the macro-
scopic continuum description must necessarily be statistical in nature, but that random statis-
tical fluctuations are strongly suppressed by the enormity of the number of molecules in any
macroscopic material object. The modern fields of nanophysics and biophysics straddle the
border between the continuum and particle descriptions of matter, resulting in numerous new
phenomena outside the scope of classical continuum physics. These topics will not be covered
here. The central theme of this book is the recasting of Newton’s laws for point particles into
a systematic theory of continuous matter, and the application of this theory to the wealth of
exotic and everyday phenomena in the macroscopic material world.
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Figure 1.1. How continuous matter really looks at the atomic scale. Noise-filtered image of freshly
cleaved Mica obtained by atomic force microscopy, approximately 225 Angstrom on a side. This gran-
ularity of matter is ignored in continuum physics. (Source: Mark J. Waner, PhD dissertation, Michigan
State University, 1998. With permission.)

1.1 Molecules

Chemical reactions such as 2H, + O, — 2H,O0 are characterized by simple integer coeffi-
cients. Two measures of hydrogen plus one measure of oxygen yield two measures of water
without anything left over of the original ingredients. What are these measures? For gases at
the same temperature and pressure, a measure is simply a fixed volume, for example a liter, so
that two liters of hydrogen plus one liter of oxygen yield two liters of water vapor, assuming
that the water vapor without condensing can be brought to the same temperature and pressure
as the gases had before the reaction. In 1811, Count Avogadro of Italy proposed that the sim-
ple integer coefficients in chemical reactions between gases could be explained by the rule
that equal volumes of gases contain equal numbers of molecules (at the same temperature and
pressure).

The various measures do not weigh the same. A liter of oxygen is roughly 16 times heavier
than a liter of hydrogen at the same temperature and pressure. The mass of any amount of
water vapor must—of course—be the sum of the masses of its ingredients, hydrogen and
oxygen. The reaction formula tells us that two liters of water vapor weigh roughly (2 x 1) 4
(1 x 16) = 18 times a liter of hydrogen. Such considerations led to the introduction of the
concept of relative molecular mass (or weight) in the ratio 1:16:9 for molecular hydrogen,
molecular oxygen, and water. Today, most people would prefer to write these proportions
as 2:32:18, reflecting the familiar molecular masses of H,, O,, and H,O, respectively. In
practice, relative molecular masses deviate slightly from integer values, but for the sake of
argument we shall disregard that here.
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Mole and molar mass

In the beginning there was no way of fixing an absolute scale for molecular mass. To define
a scale that was practical for the chemist at work in his laboratory, the molar mass of atomic
hydrogen (H) was arbitrarily set to be 1 gram. The ratios of molecular masses obtained from
chemical reactions would then determine the molar mass of any other substance. Thus the
molar mass of hydrogen gas (H;) is 2 grams and that of oxygen gas (O,) is 32 grams, whereas
water (H,0O) has a molar mass of 18 grams because the chemical reaction tells us that (2x2) +
(1 x 32) = 2 x 18 grams. This system could be extended to all chemical reactions allowing
the determination of molar mass for any substance participating in such processes.

An amount of a substance with mass equal to its molar mass is called a mole and the
symbol used for the unit is mol. Thus 1 gram of atomic hydrogen, 2 grams of molecular
hydrogen, 32 grams of molecular oxygen, or 18 grams of water all make up one mole. The
chemical reaction formula 2H, 4+ O, — 2H,0 simply expresses that 2 moles hydrogen gas
plus 1 mole oxygen gas produces 2 moles water. According to Avogadro’s hypothesis, the
number of molecules in a mole of any substance is the same, appropriately called Avogadro’s
number by Perrin and denoted N4. In 1908 Perrin carried out the first modern determination
of its value from Brownian motion experiments. Perrin’s experiments relying on Einstein’s
recent (1905) theory of Brownian motion were not only seen as a confirmation of this theory
but also as the most direct evidence for the reality of atoms and molecules.

Today, Avogadro’s number is defined to be the number of atoms in exactly 12 grams
of the fundamental carbon isotope '?>C, which therefore has molar mass equal to exactly
12 gmol™!. Avogadro’s number is determined empirically, and the accepted 2006 value [1]
is Ny = 6.02214179(30) x 10?3 molecules per mole, with the parenthesis indicating the
absolute error on the last digits.

Unit of mass: The definition of Avogadro’s number depends on the definition of the unit of
mass, the kilogram, which is (still) defined by a prototype from 1889 stored by the International
Bureau of Weights and Measures near Paris, France. Copies of this prototype and balances for
weighing them can be made to a precision of one part in 10°. Maybe already in 2011 a new
definition of the kilogram will replace this ancient one [MMQ&O06], for example by defining the
kilogram to be the total mass of an exact number of 12C atoms. Avogadro’s number will then also
become an exact number without error.

Molecular separation length

Consider a sample of a pure substance with volume V' and mass M. If the molar mass of
the substance is denoted M, the number of moles in the sample is n = M/ M, and the
number of molecules N = nN4. The volume per molecule is VV/N, and a cube with this
volume would have sides of length

VA3 Moo \3
Lyt =\ — = s
() =G
where p = M/ V is the mass density. This molecular separation length sets the scale at which
the molecular granularity of matter dominates the physics, and any conceivable continuum
description of bulk matter must utterly fail.

For liquids and solids where the molecules touch each other, this length is roughly the size
of a molecule. For solid iron we get L, &~ 0.23 nm, and for liquid water Lo ~ 0.31 nm.
Since by Avogadro’s hypothesis equal gas volumes contain an equal number of molecules, the
molecular separation length for any (ideal) gas at normal temperature and pressure (p = 1 atm
and T = 20°C) becomes L, &~ 3.4 nm. There is a lot of vacuum in a volume of gas, in fact
about 1000 times the true volume of the molecules at normal temperature and pressure.

(1.1)
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* Mixtures': The above expression for L, may also be used for a mixture of pure substances,
provided My is taken to be a suitable average over the molar masses Ml.m"I of the i-th pure
component (consisting of only one kind of molecules). For a mixture sample of mass M containing
the mass M; of each component, the total mass becomes the sum M = ) ; M;. The number of
moles of the i-th component is n; = M,-/Ml.m"I and the total number of moles in the sample is
n = Y_; n;. Characterizing the composition of the mixture by the molar fraction X; = n;/n of
each component, the average molar mass, Mo = M/n, becomes

Mol = Y Xi M™!, (1.2)
i

where ) ; X; = 1. If we instead describe the composition by the mass fraction Y; = M;/M =
XiM l.mOI / Mol of each component, and use that ) ; X; = 1, the average molar mass is determined
by the reciprocal sum,

1 Y;
=y - 1.3
Mmol ZZ Mimol ( )

where ) ; Y; = 1.

Dry air is a molar mixture of 78.08% nitrogen, 20.95% oxygen and 0.93% argon with an
average molar mass of Mo = 28.95 g mol~!. By mass the mixture is 75.56% nitrogen, 23.15%
oxygen, and 1.29% argon, and has of course the same average molar mass.

Intermolecular forces and states of matter

Apart from the omnipresent gravitational interaction between all bodies, material interactions
are entirely electromagnetic in nature, from the fury of a tornado to the gentlest kiss. A de-
tailed understanding of the so-called van der Waals forces acting between neutral atoms and
molecules falls outside the scope of this book. Generally, however, the forces are strongly
repulsive if the molecules are forced closer than their natural sizes allow, and moderately
attractive when they are moved apart. This tug of war between repulsion and attraction de-
termines an equilibrium distance between them that is comparable to the molecular size. In
Figure 1.2 is shown an example of such a potential, the famous Lennard-Jones potential (see
Problem 1.2).

When huge numbers of molecules are put together to make up a body, they may arrange
themselves in a number of different ways to minimize their total energy. The total energy
receives negative contributions from the intermolecular potential energy, which attempts to
bind the molecules to each other near equilibrium, and positive contributions from the kinetic
energy in their thermal motion, which tends to make them fly apart. The three classic states of
neutral matter—solid, liquid, and gas—depend, broadly speaking, on the competition between
negative binding energy and positive thermal energy.

Solids: In solid matter the binding is so strong that thermal motion cannot overcome it. The
molecules remain bound to each other by largely elastic forces, and constantly undergo small-
amplitude thermal motion around their equilibrium positions. If increasing external forces are
applied, solids will begin to deform elastically, until they eventually become plastic or even
fracture. A solid body retains its shape independently of the shape of a container large enough
to hold it, apart from small deformations, for example due to gravity.

Liquids: In liguid matter the binding is weaker than in solid matter, although it is still hard
for a molecule on its own to leave the company of the others through an open liquid surface.
The molecules stay in contact but are not locked to their neighbors. Molecular conglomerates
may form and stay loosely connected for a while, as for example chains of water molecules.

I The asterisk indicates that this part of the text can be skipped in a first reading.



1. CONTINUOUS MATTER

1.0

0.5 Fot N e e I

0.6

-0.5r-

-1.0+-

Figure 1.2. Sketch of the intermolecular potential energy V (r) between two roughly spherical neutral
molecules as a function of the distance r between their centers. It is attractive at moderate range and
strongly repulsive at close distance. The equilibrium between attraction and repulsion is found at the
minimum of the potential. Here the units are arbitrarily chosen such that the equilibrium distance be-
comes r = 1 and the minimum potential V(1) = —1. The horizontal dashed lines suggest the thermal
energy levels for solid, liquid, and gaseous matter.

Under the influence of external forces, for example gravity, a liquid will undergo bulk motion,
called flow, a process that may be viewed as a kind of continual fracturing. A liquid will not
expand to fill an empty container completely, but will under the influence of external forces
eventually adapt to its shape wherever it touches it.

Gases: In gaseous matter the molecules are bound so weakly that the thermal motion easily
overcomes it, and they essentially move around freely between collisions. A gas will always
expand to fill a closed empty container completely. Under the influence of external forces, for
example a piston pushed into the container, a gas will quickly flow to adapt to the changed
container shape.

Granular matter

Molecules and atoms represent without discussion the basic granularity of all macroscopic
matter, but that does not mean that all macroscopic matter can be viewed as continuous.
Barley grain, quartz sand, living beings, buildings, and numerous materials used in industry
are examples of matter having a discrete, granular substructure that influences the material
properties even at considerably larger length scales. The main difference between granular
matter and molecular matter lies in the friction that exists between the granular elements.
Although grain may flow like water in great quantities, the friction between the grains can
make them stick to each other, forming a kind of solid that may block narrow passages. A
heap of grain does not flatten out like a puddle of water, and neither do the wind-blown
ripples of dry sand in the desert. You may also build a castle of wet sand, the main part of
which remains standing even when dried out.

In this book we shall not consider granular matter as such, although at sufficiently large
length scales, granular matter may in many respects behave like continuous matter, whether
the grains are tiny as the quartz crystals in sand or enormous as the galaxies in the universe.
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1.2 The continuum approximation

Classical thermodynamics comfortably deals with homogeneous bodies made from moles of
matter where the molecular granularity can be safely ignored. Continuum physics on the
other hand aims to describe bodies with spatial variations in thermodynamic quantities, such
as density, pressure, and temperature. That aim immediately raises a conflict between the
characteristic length scale for such variations and the number of molecules that are necessary
to define the quantities. The more rapidly a quantity varies, the smaller volumes of matter
must be considered and the more important becomes the molecular granularity.

Whether a given number of molecules is large enough to warrant the use of a smooth
continuum description of matter depends on the desired precision. Since matter is never
continuous at sufficiently high precision, continuum physics is always an approximation. But
as long as the fluctuations in physical quantities caused by the discreteness of matter are
smaller than the desired precision, matter may be taken to be continuous. To observe the
continuity, one must so to speak avoid looking too sharply at material bodies. Fontenelle
stated in a similar context that “Science originates from curiosity and bad eyesight”.

Here we shall only discuss the limits to the continuum approximation for gases. Similar
limits exist for solids and liquids but are more difficult to estimate. The gas results may
nevertheless be used as an upper limit to the fluctuations (see Section 23.3 on page 398).

Density fluctuations

Consider a fixed small volume V' of a pure gas with molecules of mass m. If at a given time ¢
the number of molecules in this volume is N, the mass density at this time becomes

_ Nm
=
Due to rapid random motion of the gas molecules, the number N will be different at a later
time ¢ + At. Provided the time interval Atz is much larger than the time interval t between
molecular collisions, the molecules in the volume V' will at the later time be an essentially
random sample of molecules taken from a much larger region around V. The probability that
any particular molecule from this larger region ends up in the volume V' will be tiny. From
general statistical considerations it follows that the root-mean-square size of the fluctuations
in the number of molecules is given by AN = +/N (see Figure 1.3, and Problem 1.1). Since
the density is linear in N, the relative fluctuation in density becomes
AN 1

Ap
P N N’
In classical macroscopic thermodynamics where typically N ~ N4, the relative fluctuation
becomes of magnitude 10~12 and can safely be ignored.
In continuum physics this is not so. If we want the relative density fluctuation to be smaller
than a given value Ap/p < €, we must require N > ¢~ 2. The smallest acceptable number of
molecules, €2, occupies a volume € 2L3 | where Ly, is the molecular separation length

mol?

(1.1). A cubic cell with this volume has side length

P (1.4)

(1.5)

Licro = 6_2/3Lmol~ (16)

Thus, to secure a relative precision € = 1073 for the density, the microscopic cell should
contain 10® molecules and have side length L o = 100L 1. For an ideal gas under normal
conditions we find Lpicro ~ 0.34 pm.

The micro scale diverges for ¢ — 0, substantiating the claim that it is impossible to
maintain a continuum description to arbitrarily high precision.
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Figure 1.3. Simulation of density fluctuations as a function of volume size. A three-dimensional
“universe” consisting of 20 x 20 x 20 = 8,000 cells of unit volume is randomly filled with as many unit
mass “molecules”. On average each of the 8,000 cells should contain a single molecule, corresponding
to a density of p = 1. A “volume” consisting of V' cells will not contain precisely V' molecules, and
thus has a density that deviates from unity. The plot shows the density of a random collection of V' cells
as a function of V. The drawn curves, p = 1 + 1/+/V, indicate the expected fluctuations.

Macroscopic smoothness

As a criterion for a smooth continuum description we demand that the relative variation in
density between neighboring cells should be less than the desired precision €. The change
in density between the centers of neighboring cells along some direction x is of magnitude
Ap = Luyicro |0p/9x|. Demanding the relative variation to be smaller than the precision,
Ap/p < €, we obtain a constraint on the magnitude of the density derivative,

0
» < L, .7
dx Lmacro
where
Linacro = E_leicrn- (1.8)

As long as the above condition is fulfilled, the density may be considered to vary smoothly,
because the density changes over the micro-scale are imperceptible. Any significant change
in density must take place over distances larger than L yacro. With € = 1073 we find Lyaero &
1000 L icro &~ 0.34 mm for an ideal gas under normal conditions.

The thickness of interfaces between macroscopic bodies is typically on the order of L
and thus much smaller than L,.,. Consequently, these regions of space fall outside the
smooth continuum description. In continuum physics, interfaces appear instead as surface
discontinuities in the otherwise smooth macroscopic description of matter.

Velocity fluctuations

Everyday gas speeds are small compared to the molecular velocities—unless one is traveling
by jet aircraft or cracking a whip. What we normally mean by wind is the bulk drift of
air, not the rapid molecular motions. So even if the individual molecules move very fast in
random directions, the center of mass of a collection of N molecules in a small volume V will
normally move with much slower velocity, which for large N approximates the drift speed v.
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A sphere of diameter d will col-
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Gases consist mostly of vacuum, and apart from an overall drift, the individual molecules
move in all possible directions with average root-mean-square speed (see page 24),

3Rmol T

5 (1.9)
Mmol

Umol =

where Rpo = 8.31447 J K~! mol™! is the universal molar gas constant and 7" the absolute
temperature. For air at normal temperature one finds Ve &~ 500 m s~ .

Under very general assumptions the root-mean-square fluctuation in the center-of-mass
speed is Av = Vot / VN (see Problem 1.3). Since the fluctuation scale is set by the molec-
ular velocity, it takes much larger numbers of molecules to be able ignore the fluctuations in
everyday gas velocities. To maintain a relative precision € in the velocity fluctuations we must
require Av/v < €, implying that the linear size of a gas volume must be larger than

Umol 2/3
= ( ) Lmicro .
v

The velocity fluctuations of a gentle steady wind, say v &~ 0.5 ms™!, can be ignored with
precision € 1073 for volumes of linear size larger than Lo = 100Lyicro ~ 34 pum.
The smoothness scale should similarly be L/ ,... = € 'L’ . ' which in this case becomes
Ll o ~ 34 mm. A hurricane wind, v &~ 50 ms™!, only requires volumes of linear size
L!....=406Lgo ~ 1.6 um to yield the desired precision, but in this case fluctuations due

to turbulence will anyway completely swamp the molecular fluctuations.

L/

micro

(1.10)

IS

* Mean free path

Another condition for obtaining a valid continuum description is that molecules should in-
teract with each other to “iron out” strong differences in velocities. If there were no interac-
tions, a molecule with a given velocity would keep on moving with that velocity forever. In
solids and liquids where the molecules are closely packed, these interactions take place over
a molecular separation length.

In a gas every molecule traces out a straight path through the vacuum until it collides
with another molecule. The mean free path A is defined as the average distance traveled by
a single molecule. The other molecule is, however, not a “sitting duck” but travels itself
on average also a distance A before it is hit by the first. Since the movement directions are
arbitrary, the second molecule “sees” the first coming toward it along a straight line with a
speed that on average is orthogonal to the first and thus V2 times the root-mean-square speed
Umol- Denoting the molecular diameter by d, the collision will only happen if the center of
the second molecule is within a “striking distance” d from the path of the first, that is, inside
a cylinder of radius d. There is on average one molecule in the molecular volume L2 |, so
the mean free path is defined such that the average volume swept out by the moving spheres
equals the molecular volume, or 7d? V21 = Liml. The mean free path thus becomes

3
L mol M, mol

V2rd?  2rd?pNs

Since A/Lmot ~ p~2/3, the mean free path will in sufficiently dilute gases always become
larger than the micro scale and should instead be used to define the smallest linear scale for
the continuum description.

Air consists mainly of nitrogen and argon molecules with an average molar mass My, ~
29 g mol~! and average diameter d ~ 0.37 nm [2]. At normal temperature and pressure the
mean free path becomes A & 65 nm, which is five times smaller than the microscopic length
scale for the density, Lpicro &~ 340 nm (for € = 1073). The mean collision time may be
estimated as T &~ A /vy, and becomes for air T & 0.13 ns.

A= (1.11)
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Figure 1.4. Newton’s own copy of Principia with handwritten corrections for the second edition.
(Source: Andrew Dunn (2004). Wikimedia Commons.)

1.3 Newtonian mechanics

In Newtonian mechanics the elementary material object is a point particle (“molecule”) with
a fixed mass. Newton postulated three laws for such particles, which formed the basis for
rational mechanics in the following centuries and became a role model for all other natural
sciences. It is not the intention here to enter into a discussion of the consistency of these laws
or other objections that can be raised, but just to present them in a short form supposed to be
suitable for any reader of this book. Here they are:

1. There exist (inertial) reference frames in which a particle moves with constant velocity
along a straight line when it is not acted upon by any forces.

2. The mass times the acceleration of a particle equals the sum of all forces acting on it.

3. Ifa particle acts on another with a certain force, the other particle acts back on the first
with an equal and opposite force.

In Appendix A you will find a little refresher course in Newtonian mechanics.

Newton’s Second Law is the fundamental equation of motion. Mathematically, this law
is expressed as a second-order differential equation in time. Since the force acting on any
given particle can depend on the positions and velocities of the particle itself and of other
particles as well as on external parameters, the dynamics of a collection of particles becomes
a web of coupled ordinary second-order differential equations in time. Even if macroscopic
bodies are huge collections of atoms and molecules, it is completely out of the question to
solve the resulting web of differential equations. In addition, there is the problem that molec-
ular interactions are quantum mechanical in nature, so that Newtonian mechanics does not
apply at the atomic level. This knowledge is, however, relatively new and has as mentioned
earlier some difficulty in making itself apparent at the macroscopic level. So although quan-
tum mechanics definitely rules the world of atoms, its special character is rarely amplified
to macroscopic proportions, except in low-temperature phenomena such as superconductivity
and superfluidity.

Sir Isaac Newton (1643-1727).
English physicist and mathemati-
cian.  Founded classical me-
chanics on three famous laws in
his books Philosophiae Naturalis
Principia Mathematica (1687).
Newton developed calculus to
solve the equations of motion,
and formulated theories of optics
and of chemistry. He still stands
as perhaps the greatest scientific
genius of all time. (Source: Wiki-
media Commons.)
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Laws of balance

In Newtonian particle mechanics, a “body” is taken to be a fixed collection of point particles
with unchangeable masses, each obeying the Second Law. For any body one may define
various global mechanical quantities, which like the total mass are calculated as sums over
contributions from each and every particle in the body. Some of the global quantities are
kinematic: momentum, angular momentum, and kinetic energy. Others are dynamic: force,
moment of force, and power (rate of work of all forces).

Newton’s Second Law for particles leads to three simple laws of balance—often called
conservation laws—relating the kinematic and dynamic quantities. They are (in addition to
the trivial statement that the mass of a Newtonian body never changes):

o The rate of change of momentum equals force,
o The rate of change of angular momentum equals moment of force,

o The rate of change of kinetic energy equals power.

Even if these laws are insufficient to determine the dynamics of a multi-particle body, they
represent seven individual constraints (two vectors and one scalar) on the motion of any col-
lection of point particles, regardless of how complex it is.

In continuum mechanics any volume of matter may be considered to be a body. As the
dynamics unfolds, matter is allowed to be exchanged between the environment and the body,
but we shall see that the laws of balance can be directly carried over to continuum mechanics
when exchange of matter between a body and its environment is properly taken into account.
Combined with simplifying assumptions about the macroscopic behavior, for example sym-
metry, the laws of balance for continuous matter also turn out to be quite useful for obtaining
quick solutions to a variety of problems.

Material particles

In continuum physics we generally speak about material particles as the elementary con-
stituents of continuous matter, obeying Newton’s equations. A material particle will always
contain a large number of molecules but may in the continuum description be thought of as in-
finitesimal or point-like. From the preceding analysis we know that material particles cannot
be truly infinitesimal, but represent the smallest bodies that may consistently be considered
part of the continuum description within the required precision. Continuum physics does not
“on its own” go below the level of the material particles. Even if the mass density may be
determined by adding together the masses of all the molecules in a material particle and di-
viding the sum by the volume of the particle, this procedure falls, strictly speaking, outside
continuum physics.

Although we normally think of material particles as being identical in different types of
matter, it is sometimes necessary to go beyond the continuum approximation and look at their
differences. In solids, we may with some reservation think of solid particles as containing a
fixed collection of molecules, whereas in liquids and especially in gases we should not forget
that the molecules making up a fluid particle at a given instant will shortly be replaced by
other molecules. If the molecular composition of the matter in the environment of a material
particle has a slow spatial variation, this incessant molecular game of “musical chairs” may
slowly change the composition of the material inside the particle. Such diffusion processes
driven by spatial variations in material properties lie at the very root of fluid mechanics. Even
a spatial velocity variation will drive momentum diffusion, causing internal (viscous) friction
in the fluid.
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1.4 Reference frames

Physics is a quantitative discipline using mathematics to relate measurable quantities ex-
pressed in terms of real numbers. In formulating the laws of nature, undefined mathematical
primitives—for example the points, lines and circles of Euclidean geometry—are not particu-
larly useful, and such concepts have for this reason been eliminated and replaced by numerical
representations everywhere in physics. This step necessitates a specification of the practical
procedures by which these numbers are obtained in an experiment; for example, which units
are being used.

Behind every law of nature and every formula in physics, there is a framework of proce-
dural descriptions, a reference frame, supplying an operational meaning to all physical quan-
tities. Part of the art of doing physics lies in comprehending this, often tacitly understood,
infrastructure to the mathematical formalism. The reference frame always involves physical
objects—balances to measure mass, clocks to measure time and rulers to measure length—
that are not directly a part of the mathematical formalism. Precisely because they are physical
objects, they can at least in principle be handed over or copied, and thereby shared among
experimenters. This is in fact still done for the unit of mass (see page 3).

Agreement on a common reference frame for all measurable quantities is a necessary
condition for doing science. The system of units, the Systéme Internationale (SI), is today
fixed by international agreement; but even if our common frame of reference for units is thus
defined by social convention, physics is nevertheless objective. In principle our frames of
reference could be shared with all other beings in the universe, or alternatively given a precise
translation to theirs.

Time

Time is the number you read on your clock. There is no better definition. Clocks are phys-
ical objects that may be shared, compared, copied, and synchronized to create an objective
meaning of time. Most clocks, whether they are grandfather clocks with a swinging pendulum
or oscillating quartz crystals, are based on periodic physical systems that return to the same
state again and again. Time intervals are simply measured by counting periods. There are
also aperiodic clocks, for example hour glasses, and clocks based on radioactive elements. It
is especially the latter that allow time to be measured on geological time scales. On extreme
cosmological time scales the very concept of time becomes increasingly more theory laden;
see for example [RZ09].

Like all macroscopic physical systems, clocks are subject to small fluctuations in the way
they run. Some clocks are considered better than others because they keep time more stably
with respect to copies of themselves as well as with clocks built on other principles. Grand-
father clocks are much less stable than mechanical maritime chronometers that in turn are
less stable than modern quartz clocks. The international frame of reference for time is always
based on the most stable clocks currently available.

Unit of time: The unit of time, the second, was formerly defined as 1/86,400 of a mean solar
day. But the Earth’s rotation is not that stable, and since 1966 the second has been defined by
international agreement as the duration of 9,192,631,770 oscillations of the microwave radiation
absorbed in a certain hyperfine transition in cesium-133, a metal that can be found anywhere on
Earth [1]. A beam of cesium-133 atoms is used to stabilize a quartz oscillator at the right frequency
by a resonance method, so what we call an atomic clock is really an atomically stabilized quartz
clock. The intrinsic precision in this time standard has been continually improving and is now
about 4 x 10716 corresponding to about 1 second in 80 million years [LHIJO7].

In the extreme mathematical limit, time may be taken to be a real number, and in Newto-
nian physics its value is assumed to be universally knowable.
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Points may be visualized as dots
on a piece of paper. Each point is
labeled by its position in the cho-
sen coordinate system (not visu-
alized here).
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In different coordinate systems
the same points have different co-
ordinates, connected by a trans-
formation x” = f(x).

Figure 1.5. Independently of how different their reference frames, two observers who agree on the
unique reality of any point in space can in principle determine the coordinate transformation relating
them by listing their respective coordinates for each and every point in space. (Source: Fragment of
“The Creation of Adam”, by Michelangelo Buonarroti (1511). Wikimedia Commons.)

Space

It is a mysterious and so far unexplained fact that physical space has three dimensions, which
means that it takes exactly three real numbers to locate a point in space. These numbers
are called the coordinates of the point, and the reference frame for coordinates is called the
coordinate system. It must contain all the operational specifications for locating a point given
the coordinates, and conversely obtaining the coordinates given the location. In this way we
have relegated all philosophical questions regarding the real nature of points and of space to
the operational procedures contained in the reference frame.

Earth coordinates: On Earth everybody navigates by means of a geographical coordinate
system agreed upon by international convention, in which a point is characterized by latitude &,
longitude A, and elevation A. Latitude and longitude are angles fixed by the Earth’s rotation axis
and the position of the former Royal Observatory in Greenwich near London (UK). Elevation is
defined as the signed height above the average sea level. The modern Global Positioning System
(GPS) uses instead “fixed points in the sky” in the form of at least 24 satellites, and the geographical
coordinates of any point on Earth as well as the absolute time in this point is determined from radio
signals received from four or more of these satellites.

The triplet of coordinates that locates a point in a particular coordinate system is called
its position in that coordinate system, and usually marked with a single symbol printed in
boldface?, for example x = (x1,x,x3). Given the position x = (x;, X2, x3) of a point in
one coordinate system, we now require that the position x” = (x}, x5, x3) of the exact same
point in another coordinate system must be calculable from the first:

x1 = fi(x1, x2, x3), x5 = fa(x1, X2, X3), x5 = f3(x1,x2,x3). (1.12)

More compactly this may be written x’ = f (x).
The postulate that there should exist a unique, bijective transformation connecting any
given pair of coordinate systems reflects that physical reality is unique (see Figure 1.5), and

2The printed boldface notation is hard to reproduce in calculations with pencil on paper, so other graphical means
are commonly used, for example a bar (X), an arrow (X), or underlining (x).
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that different coordinate systems are just different ways of representing the same physical
space in terms of real numbers.

What’s in a symbol?: There is nothing sacred about the symbols used for the coordinates.
Mostly the coordinates are given suggestive or conventional symbolic names in particular coor-
dinate systems, for example §, A, and & for the Earth coordinates above. In physics the familiar
Cartesian coordinates are often denoted x, y, and z, while in more formal arguments one may
retain the index notation, x1, x2, and x3. Cylindrical coordinates are denoted r, ¢, and z, and
spherical coordinates r, 8, and ¢. These three coordinate systems are in fact the only ones to be
used in this book.

Length

From the earliest times humans have measured the length of a road between two points, say
a and b, by counting the number of steps it takes to walk along this road. This definition of
length depends, however, on how you are built. In order to communicate to others the length
of a road, the count of steps must be accompanied by a clear definition of the length of a step
in terms of an agreed-upon unit of length.

Unit of length: Originally the units of length—inch, foot, span, and fathom—were directly re-
lated to the human body, but increasing precision in technology demanded better-defined units. In
1793 the meter was introduced as a ten millionth of the distance from equator to pole on Earth, and
until far into the twentieth century a unique “normal meter” was stored in Paris, France. In 1960
the meter became defined as a certain number of wavelengths of a certain spectral line in krypton-
86, an isotope of a noble gas that can be found anywhere on Earth. Since 1983 the meter has been
defined by international convention to be the distance traveled by light in exactly 1/299,792,458
of a second [1]. The problem of measuring lengths has thus been transferred to the problem of
measuring time, which makes sense because the precision of the time current standard is at least a
thousand times better than any proper length standard.

This method for determining the length of a path may be refined to any desired practical
precision by using very short steps. In the extreme mathematical limit, the steps become
infinitesimally small, and the road becomes a continuous path.

Distance

The shortest path between two points is called a geodesic and represents the “straightest line”
between the points. In Euclidean space, a geodesic is indeed what we would intuitively call
a straight line. On the spherical surface of the Earth geodesics are great circles, and airplanes
and ships travel along them for good reason. The distance between two points is defined to
be the length of a geodesic connecting them. Since the points are completely defined by their
coordinates @ and b in the chosen coordinate system, the distance must be a real positive
function d(a, b) of the two sets of coordinates.

It is clear that the distance between two points must be the same in all coordinate systems,
because it can, in principle, be determined by laying out rulers or counting steps between two
points without any reference to coordinate systems. Distance is a property of space rather
than a property of the coordinate system. The actual distance function d’(a’, b’) in a new
coordinate system may be different from the old, d(a, b), but the numerical values have to be
the same,

d'(@,b') = d(a,b), (1.13)

where @’ = f(a) and b’ = f (b) are calculated by the coordinate transformation (1.12).
Knowing the distance function d(a, b) in one coordinate system, it may be calculated in any
other coordinate system by means of the appropriate coordinate transformation.

road

shortest

a

The length of the road between
the positions @ and b is measured
by counting steps along the road.
Different roads have different
lengths, but normally there is a
unique shortest road.

path

shortest

In the mathematical limit the
shortest continuous path con-
necting @ and b is called the
geodesic. Normally, there is only
one geodesic between any two
points.

b b

d'(a’,b") /= d(a,b)

a <a

The distance is invariant under
coordinate transformations.
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A Cartesian coordinate system,
here with coordinates labeled x,
v, and z. Looks just like the ones
you got to know (and love) in
high school.

René Descartes (1596-1650).
French scientist and philosopher,
father of analytic geometry. De-
veloped a theory of mechani-
cal philosophy, later to be super-
seded by Newton’s work. Con-
fronted with doubts about reality,
he saw thought as the only ar-
gument for existence: “I think,
therefore I am”.

The vector u connects the point a
with the point b. The same vector
also connects the points ¢ and d.

William Rowan Hamilton
(1805-1865). Irish mathematical
physicist. Created the Hamil-
tonian formulation of classical
mechanics around 1833. Intro-
duced dot- and cross-products
of vectors and applied vector
analysis to physical problems
around 1845.

1.5 Cartesian coordinate systems

The space in which we live is nearly flar everywhere. Its geometry is Euclidean, meaning that
Euclid’s axioms and the theorems deduced from them are valid everywhere. After Einstein
we know, however, that space is not perfectly flat. In the field of gravity from a massive body,
space necessarily curves, but normally only very little. At the surface of the Earth the radius
of curvature of space due to Earth’s gravity is comparable to the distance to the Sun. The kind
of physics that is the subject of this book may always be assumed to take place in perfectly
flat Euclidean space.

The Cartesian distance function

In Euclidean geometry one derives Pythagoras’ theorem, which relates the lengths of the sides
of any right-angled triangle. The simplicity of Pythagoras’ theorem favors the use of right-
angled Cartesian coordinate systems in which the distance between two points in space is the
square root of the sum of the squares of their coordinate differences.

d(a.b) = V(a1 = b1)* + (a2 — b2)? + (a3 — b3)*. (1.14)
Cartesian coordinates provide by far the most compact description of the geometry of flat
space, and we shall in this book systematically describe physics “through the eyes” of Carte-
sian coordinates—even when we employ cylindrical or spherical coordinates.

Cartesian vectors

Since the distance between two points only depends on coordinate differences, triplets of
coordinate differences naturally play a major role in Cartesian coordinate systems. Such
triplets are called vectors and are marked with boldface in the same way as positions, for
example u = (uq,uz,u3) = (by — ay, by — az, b3 — az), which is constructed from the
coordinate differences of the positions b and a. Geometrically, this vector may be visualized
as an arrow connecting @ to b. As there is no “memory” in a vector about the absolute
positions of the points, the same vector u will carry® you from any given position to another,
provided the positions have the same coordinate difference. A position triplet x connects the
origin of the coordinate system 0 = (0,0, 0) to the particular point in space located by x,
and positions may for this reason also be viewed as vectors (in Cartesian coordinates*). The
mathematical concept of a vector is usually attributed to W. R. Hamilton.

The structure of the Cartesian distance function makes it natural to define linear operations
on vectors, such as multiplication with a constant, ku = (ku, kus, kus); addition, u +
v = (u1 + v1,up + vz, u3 + v3); and subtraction, ¥ — v = (1] — vy, Uz — Uz, U3 — V3).
Mathematically, this makes the set of all vectors a three-dimensional vector space. Other
operations, such as the dot-product, u - v = uv; + UV + u3v3, and the cross-product,
uxv = (Upv3 — U3V, U3V] — ULV3, U VU2 — U2V1), May also be defined and have simple
geometric interpretations.

In Appendix B Cartesian vector and tensor algebra is set up and analyzed in full detail.
Most readers should already have met and worked with geometric vectors and will only need
to consult this appendix in rare cases, for example to get a proper understanding of tensors
and coordinate transformations. Coordinate transformations are central to analytic geometry
and lead to the characterization of geometric quantities—scalars, vectors, and tensors—by the
way they transform rather than in often ill-defined geometric terms.

3The word “vector” is Latin for “one who carries”, derived from the verb “vehere”, meaning to carry, and also
known from “vehicle”. In epidemiology a “vector” is a carrier of disease.

“In non-Euclidean spaces or in curvilinear coordinate systems, the vector concept is only meaningful for infinites-
imal coordinate differences in the infinitesimal neighborhood of any point (the local Euclidean tangent space).
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1.6 Fields

In the extreme mathematical limit, material particles are taken to be truly infinitesimal and
all physical properties of the particles as well as the forces acting on them are described by
smooth—or at least piecewise smooth—functions of space and time. Continuum physics
is therefore a theory of fields. Mathematically, a field f is simply a real-valued function,
f(x,t) = f(x1,x2,x3,t)0r f(x,t) = f(x,y,z,t), of the spatial coordinates x and time ¢,
representing the value of a physical quantity in this point of space at this time>.

The fields of continuum physics

We have already met the mass density field p(x, ). Knowing this field, the mass dM of a
material particle occupying the volume d V' near the point x at time ¢ can be calculated as

dM = p(x,t)dV. (1.15)

We shall mostly suppress the explicit space and time variables and just write dM = pdV .
Sometimes a collection of functions is also called a field and the individual real-valued
members are called its components. The most fundamental field of fluid mechanics, the ve-
locity field v = (v1, v2,v3) or v = (vx, vy, V;), has three components, one for each of the
Cartesian coordinate directions. The velocity field v(x, ¢) determines the momentum,

dP = v(x,t)dM, (1.16)

of a material particle of mass d M near x at time ¢. The velocity field will be of major
importance in formulating the dynamics of continuous systems.

Besides fields characterizing the state of the material, such as mass density and velocity, it
is convenient to define fields that characterize the forces acting on and within the material. The
gravitational acceleration field g (x,?) penetrates all bodies from afar and acts on a material
particle of mass d M with a force

dF = g(x,t)dM. 1.17)

Using that dM = pdV we may also write gravity as a body force (or volume force) of the
form, dF = f dV, with a density of force f = pg. It has infinite range, and the same is
true for electromagnetism, but that also ends the list. No other forces in nature seem to have
infinite range.

Some force fields are only meaningful for regions of space where matter is actually
present, as for example the density p or the pressure field p, which acts across the imagined
contact surfaces that separate neighboring volumes of a fluid at rest. Pressure is, however,
not the only contact force. Fluids in motion, solids and more general materials, have more
complicated contact forces that can only be fully described by the nine-component stress
field, 6 = {0y}, which is a (3 x 3) matrix field with rows and columns labeled by Cartesian
coordinates: i, j = 1,2,3o0ri,j = x,y,z.

Mass density, velocity, gravity, pressure, and stress are the usual fields of continuum me-
chanics and will all be properly introduced in the chapters to come. Other fields are thermo-
dynamic, like the temperature 7', the specific internal energy U, or the specific entropy S.
Some describe different states of matter, for example the electric charge density p, and cur-
rent density j. together with the electric and magnetic field strengths, E and B. Like gravity
g, these force fields are thought to exist in regions of space completely devoid of matter.

SIn mathematics the tendency is to use coordinates labeled by integers. In physics we shall—as mentioned
before—mostly label the coordinate axes x, y, and z, and use these labels as vector indices # = (Ux, Uy, Uz).
The general position is denoted X = (x, ¥, z) and becomes admittedly a bit inconsistent because of the strange re-
lations, Xy = X, Xy = y and x; = z. In many physics texts the general position is instead denoted r = (x, ¥, z),
but that comes with its own esthetic problems in more formal analysis. There seems to be no easy way to get the best
of both worlds.

English field
German feld
Dutch veld
Danish felt
Swedish falt
French champ
Italian campo
Spanish campo
Russian polje

The use of the word “field” in
physics to denote a function of
the spacetime coordinates has
an unclear origin. The orig-
inal meaning of phrases such
as “gravitational field”, “elec-
tric field”, or “magnetic field”
was presumably to denote re-
gions of gravitational, electric, or
magnetic influences in the other-
wise empty space around a body.
The meaning was later shifted to
the mathematical representation
of the strength (and direction) of
such influences in every point of
space.
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There are also fields that refer to material properties, for example the coefficient of shear
elasticity p of a solid and the coefficient of shear viscosity 7 of a fluid. Such fields are often
nearly constant within homogeneous bodies, that is, independent of space and time, and are
mostly treated as material constants rather than true fields.

Field equations

Like all physical variables, fields evolve with time according to dynamical laws, called field
equations. In continuum mechanics, the central equation of motion descends directly from
Newton’s Second Law applied to every material particle. Mass conservation, which is all but
trivial and most often tacitly incorporated in particle mechanics, turns in continuum theory
into an equation of motion for the mass density. Still other field equations such as Maxwell’s
equations for the electromagnetic fields have completely different and non-mechanical ori-
gins, although they do couple to the mechanical equations of motion via the Lorentz force.

Mathematically, field equations are partial differential equations in both space and time.
This makes continuum mechanics considerably more difficult than particle mechanics where
the equations of motion are ordinary differential equations in time. On the other hand, this
greater degree of mathematical complexity also leads to a plethora of new and sometimes quite
unexpected phenomena. Mathematically, field equations in three-dimensional space would be
quite cumbersome to deal with, were it not for an efficient extension of vector methods to
what is now called called vector calculus or field calculus. It is introduced along the way in
the chapters to come and presented with some rigor in Appendix C.

In some field theories, for example Maxwell’s electromagnetism, the field equations are
linear in the fields, but that is not the case in continuum mechanics. The non-linearity of the
field equations of continuum mechanics is caused by the velocity field, which behaves like
a “wind” that carries other fields (and itself) along in the motion. This adds a further layer
of mathematical difficulty to this subject, making it very different from linear theories—and
much richer. The non-linearity leads to dynamic instabilities and gives rise to the chaotic and
as yet not fully understood phenomenon of turbulence, well known from our daily dealings
with water and air.

Local versus global descriptions

In modern textbooks on continuum physics there has been a tendency to avoid introducing
the physical concept of a material particle. Instead these presentations rely on the Newto-
nian global laws of balance to deduce the local continuum description—in the form of partial
differential equations—by purely mathematical means. Although quite elegant and appar-
ently free of physical interpretation problems, such an approach unfortunately obscures the
conditions under which the local laws may be assumed to be valid.

In this book the concept of a material particle has been carefully introduced in the proper
physical context set by the desired precision of the continuum description. The advantage of
such an approach is that the local description of continuous systems in terms of partial dif-
ferential equations in space and time may be interpreted as representing the Newtonian laws
applied to individual material particles. Furthermore, this “materialistic”” approach allows us
to set physical limits to the validity of the partial differential equations involving local quan-
tities such as the density and the velocity. Such quantities cannot be assumed to be physically
meaningful at distance scales smaller than the microscopic length scale L ;0. Furthermore,
to maintain a continuum description, major spatial changes in these quantities should not take
place in regions smaller than the macroscopic length scale L,cr0, @ condition that limits the
magnitude of the spatial derivatives found in partial differential equations. Through the dy-
namical equations expressed as partial differential equations, the spatial limits imposed by
precision also set limits on the magnitude of the partial time derivatives.
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Mathematically, the local and global equations are equivalent, and must both be presented
in any textbook, including this one. The local equations allow us to find exact solutions, either
analytically or numerically, while the global equations are well suited for getting approxima-
tive solutions and making estimates.

Physical reality of force fields

Whereas the mass density and the pressure only have physical meaning in regions actually
containing matter (but may be defined to be zero in vacuum), the gravitational field is as-
sumed to exist and take non-vanishing values even in the vacuum. It specifies the force that
would be exerted on a unit mass particle at a given point, but the field is assumed to be there
even if no particles are present. In non-relativistic Newtonian physics, the gravitational field
has no independent physical meaning and may be completely eliminated and replaced by
non-local forces acting between material bodies. The true physical objects appear to be the
material bodies, and the gravitational field is just a mathematical convenience for calculating
the gravitational forces exerted by and on these bodies according to Newton’s law of gravity.
There are no independent dynamical equations that tell us how the Newtonian field of gravity
changes with time. When material bodies move around or change shape, their fields of gravity
adapt instantaneously everywhere in space to reflect these changes.

In relativistic mechanics, on the other hand, fields take on a completely different meaning.
The reason is that instantaneous action-at-a-distance cannot take place. If matter is moved,
the current view is that it will take some time before the field of gravity adjusts to the new
positions, because no signal can travel faster than light. As we understand it today, gravity
is mediated by a field that emanates from massive bodies and in the manner of light takes
time to travel through a distance. If the Sun were suddenly to blink out of existence, it would
take eight long minutes before daylight was switched off and the Earth set free in space.
Due to relativity, force fields must also travel independently, obey their own equations of
motion, and carry physical properties such as energy and momentum. Electromagnetic waves
bringing radio and TV signals to us are examples of force fields thus liberated from their
origin. Gravitational waves have not yet been observed directly. Indirectly they have been
observed in the spin-down of binary neutron star systems, which cannot be fully understood
unless gravitational radiation is taken into account [WTO0S5].

Even if we do not deal with relativistic theories of the continuum, and therefore may con-
sider the gravitational field to be merely a mathematical convenience, it may nevertheless be
wise, at least in the back of our minds, to think of the field of gravity as having an independent
physical existence. Then we shall have no philosophical problem endowing it with physical
properties such as energy, even in matter-free regions of space.

Is matter really discrete or continuous?

Although continuum physics is always an approximation to the underlying discrete molec-
ular level, this is not the end of the story. At a deeper level it turns out that matter is best
described by another continuum formalism, relativistic quantum field theory, in which the
discrete particles—electrons, protons, neutrons, nuclei, atoms, and everything else—arise
as quantum excitations of the fields. Relativistic quantum field theory without gravitation
emerged in the middle of the twentieth century as the basic description of the subatomic
world, but in spite of its enormous success it is still not clear how to include gravity.

Just as the continuity of macroscopic matter is an illusion, the quantum field continuum
may itself one day be replaced by even more fundamental discrete or continuous descriptions
of space, time, and matter. It is by no means evident that there could not be a fundamental
length in nature setting an ultimate lower limit to distance and time, and theories of this kind
have in fact been proposed [Whe89]. It appears that we do not know, and perhaps will never
know, whether matter at its deepest level is truly continuous or truly discrete.
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Problems

1.1 Consider a small volume V' of a much larger volume of gas, such that the probability for any
molecule to be found in V' is exceedingly small. If the average number of molecules in V' is known to
be N, the probability of finding precisely n of the molecules in V' is given by the Poisson distribution,

n

N
Pr(n|N) = —'e_N.
n!

Show that

(a) It is normalized.
(b) The mean value is (n) = N.
(¢) The variance is AN? = ((n — N)?) = N, thatis AN = +/N.

1.2 The Lennard—Jones potential is often used to describe the interaction energy between two neutral
atoms. It is given by the conventional formula

Vo) — 4 s12 56
r)y=4e| =5 ——¢|.
PYP T

where r is the distance between centers of the atoms. The parameters € and ¢ have dimensions of energy
and length.

(a) Determine the equilibrium distance r = a where the potential is minimal, and its minimal value.
(b) Determine the leading behavior of the potential around minimum.

(c) Calculate the frequency of radial harmonic vibrations around equilibrium with one atom held fixed.
(d) As an example, take argon, which has molar mass My = 40 gmol™!, molar energy ¢ =
1 kJ mol~!, and equilibrium distance a = 2.87 A.

1.3 Consider a collection of N identical molecules (a “material particle”) taken from a large volume
of gas. Let the instantaneous molecular velocities be v, forn = 1,2---, N. Collisions with other
molecules in the gas at large will randomly change the velocity of each of the selected molecules, but
if there is no overall drift in the gas, the velocity of individual molecules should average out to zero,
(vn) = 0, the velocities of different molecules should be uncorrelated, (v, vy, ) = 0 for n # m, and the

average of the square of the velocity should be the same for all molecules, (v%) = vg.
(a) Show that the root-mean-square average of the center-of-mass velocity of the collection equals
vo/~/N.
1.4 Any distance function must satisfy the axioms
d(a,a) =0,
d(a,b) =4d(b,a), (symmetry)
d(a,b) <d(a,c)+d(c,b). (triangle inequality)

Show that the Cartesian distance function (1.14) satisfies these axioms.



