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Abstract

A variant of Kau
man�s NKC�model for genetic evolution and adaption
is analysed� First� a number of results are derived for species evolving in
isolation� Next� it is shown that the evolution of interacting species belongs
to one of two phases depending on the strength of the interaction� There
is a frozen phase in which all species eventually reach local �tness maxima
and stop evolving� and there is a chaotic phase in which a self�sustaining
fraction of all species keep evolving� Individual species reach local �tness
maxima also in the chaotic phase� but eventually their �tness is changed as a
consequence of the evolution of other species� and they start evolving again�

The evolutionary activity of the steady state is a natural order parameter
for the ecosystem� Closed expressions for the value of this order parameter
and the system�s relaxation time are given� The relaxation time diverges at
the phase boundary� showing the system is critical there�

All results were obtained analytically for the maximally rugged case of
K � � � N � and to leading order in N � the number of genes in a species�

PACS numbers� �������e	 �
�����s	 �������j	 
��
��Ht

�



� Introduction

We consider a variant of a simple� proto�typical model for biological evolution
suggested by S� Kau
man ��� �� 
� ��� the co�evolution of abstract haploid
organisms with a single copy of chromosomes� Evolution in this model is
driven by random mutations of individual genes� Each species evolves in
a �tness landscape which represents those aspects of its environment that
remain unchanged on the time�scale of evolution� The �tness of any species
depends on its position in its �tness landscape and on the state of other
species� Species are� so to speak� part of each others e�ective landscapes�
These may therefore change with time as species evolve�

It has been suggested �
� that this so�called NKC�model self�organizes
dynamically to criticality ��� and thereby provides a very simple model for
the intermittency of extinction events observed in biological evolution by
Raup ���� The purpose of our investigation of this model is to demonstrate
its capacity for self�organization to criticality� if it is there in the model� This
article reports on some progress towards this end� in�as�much as we show that
the �rst prerequisite� critical behaviour� is there in the model� We may hope
then that a more realistic version of the model� suggested by our results� may
self�organize to criticality� Whether this is the case� is not addressed here�

The letters N � K� and C in the model�s name� denote parameters for�
respectively� the number of genes in the evolving organisms� the roughness
of their �tness landscapes� and the strength of their mutual dependence�
We study the model with maximally rugged �tness landscapes� obtained for
K � N ��� so K does not occur as an independent parameter in the present
article� We demonstrate analytically that it possesses two phases� one phase
with dynamics governed by attractive �xed points� and another phase with
chaotic dynamics� The phases are separated by a critical line in the �N�C��
plane at C � N� logN � We have obtained closed expressions� valid anywhere
in the two phases� for the system�s relaxation time towards its asymptotic
behaviour�

Some of the analytical results we give below for species evolving in iso�
lation have been seen in numerical studies �	� ��� and derived in ���� They
represent a natural �rst insight� and are included to make the presentation
self�contained� Di
erent but related results have been obtained for the NK�
model with general K � � in �����

In the body of the present article� results are derived in a heuristic man�
ner� In this way we� hopefully� give the reader a qualitative understanding
of the dynamics of the NKC�model� More stringent derivations and other
technical matters have been relegated to a number of appendices�
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� The system

We consider an ensemble of mutually dependent and evolving species� an
ecosystem� At any time� the state of any species is given by the state of
its genome� This genome contains N genes� We shall assume the genes
are binary variables� i� e� there are only two alleles� A � �� We do not
expect our results to change in any signi�cant way if the number of alleles is
changed� as long as it is small compared with N in results based on expansion
in ��N � We do not distinguish between phenotypes and genotypes� and
also neglect variations in type within a species� In real life� variation is
responsible for the very existence of evolution� In the NKC�model� however�
only this consequence of variation is modelled� evolution takes place� and
is driven by a constant rate of mutations of individual� randomly chosen
genes� If a mutation increases the �tness of a species� it is accepted� and
the entire species is changed� If a mutation does not increase the �tness�
it is rejected� and the species remains unchanged� Tie situations� with two
genetic con�gurations having the same �tness� do not occur �have measure
zero�� due to the way we assign �tness to genetic con�gurations� If the time�
scale that selection works on is much faster than the time�scale for mutations�
this lends some justi�cation to our �all or nothing� dynamics neglecting
variations ����� Proliferation and extinction of species are both neglected in
the present article� though the model could be adapted to accommodate their
description�

The �tness f of any of the evolving species is a random function of its N
genes and of C other genes belonging to other species ����� These C other
genes are chosen at random among the genes of other species� For a given
sample of the kind of ecosystem described here� the particular choice for these
C genes and the random �tness function de�ne the sample� and remain �xed
during evolution � the randomness is quenched�

The particular probability distribution p�f� used to de�ne the �tness
function does not matter� we shall not even bother to introduce it in our
considerations below� because it turns out that it disappears again by a
transformation of variables to F �

R f
��

df � p�f ��� In the case where p is
uniform on the interval � � f � �� we have f � F � So for convenience we
shall refer to F as the �tness� although F in the general case really denotes
the probability for �tness less than f � The elimination of p�f� in equations
expresses that the value f of the �tness is irrelevant� only the probability F
of being less �t matters�

We have two reasons to consider random �tness landscapes� the �rst
reason is a conjecture� the second is proven correct in the appendices�

�� Evolution in any �tness landscape having an e
ectively �nite corre�
lation length� will� when viewed at su�ciently coarse�grained scales
of time and space �con�guration space� i�e�� look like evolution in a






random �tness landscape� So evolution in a random �tness landscape
describes the large�scale behaviour of evolution in a large class of land�
scapes� Consequently� with this choice of landscape we are avoiding
the particular� while treating a quite general case�

�� It is technically convenient� the absence of correlations allows us to
derive a number of analytical results�

Notice that from a mathematical point of view� N might as well be the
number of positions in the primary sequence of a protein� with A � ��
denoting the �� amino acids that potentially could occur at each position�
Or A � � could denote the � nucleotides possible at each site in a DNA
sequence of length N �

Alternatively� we may think of the N genes and their A alleles as N Potts
spins and their A possible values in an A�state Potts model� With V � �f
denoting the energy of a spin�con�guration� we recognize in each species a
sample of Derrida�s random energy model ��
� ���� and these samples are
asymmetrically coupled to each other for C �� �� In this language� the dy�
namics of mutations described above is the random�site Metropolis algorithm
at zero temperature�

� Estimating the length of walks

Evolution traces out a path in con�guration space� At each time step� the
path is either extended one step from its current end point to a nearest neigh�
bor � when a mutation leading to higher �tness is o
ered to and accepted
by evolution � or the path is not extended � because a mutation leading
to lower �tness is o
ered and rejected� This path is often referred to as an
adaptive walk�

In this section� we are not concerned with the temporal aspects of evolu�
tion� but only with the length � of adaptive walks� This limitation simpli�es
the description a good deal� In subsequent sections� temporal aspects are
treated�

Before we get involved with mathematics� let us estimate the average
length of adaptive walks� and the average �tness they lead to� The qualitative
picture thus obtained is con�rmed by rigorous calculations in appendix B�

We assume N is large� The dimension of con�guration space is N � We
assume the length of adaptive walks is much smaller than

p
N � and �nd this

assumption consistent with the results it leads to� Since the walk proceeds by
random mutations� it proceeds in random directions in con�guration space�
There are many more directions than there are steps in the walk� by as�
sumption� So each step in the walk has a di
erent direction� In each step
of the adaptive walk� the �tness F is increased� The value it increases to� is
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uncorrelated � to leading order in ��N � see appendix A � with its previ�
ous value� except it is larger� of course� Consequently� in each step � � F is
halved� on the average� Thus� starting the walk with F � �� after � steps the
average �tness is ������ An adaptive walk stops when all neighbor positions
have lower �tness than the current position� Since �tnesses are random and
uncorrelated� this happens when N independent random numbers happen to
be smaller than F � On the average� this occurs when � � F � ��N � This is
our estimate for the average �nal �tness� and� setting �� F � ���� we have
an estimate for the average length of an adaptive walk�

�� � logN� log � ���

In the derivation of this result� we neglected correlations between  uctua�
tions around the averages that we worked with� They do not change the
logarithmic dependence on N in Eq� ���� but do change the coe�cient of
logN � see appendix B�

In addition to a more precise result for the average length of adaptive
walks� we want to know the probability distribution Q� for �� In ���� �long
upper tails containing little probability� were seen in numerical results for
Q�� So one may wonder whether Q� decreases as a power of � at large �� or
faster� We found that �Q������������� is a Poisson distribution to leading order
in �� logN � see appendix C and �gure ��

� Estimating the duration of walks

Since we let the adaptive walk start out with �tness F � �� the probability
Q� that it is at a local �tness maximum at time t � � after the �rst step is

Q� � ��N ���

This is a rigorous result�
On the average� and to leading order in ��N � each step taken� including

the �rst� reduces � � F by a factor �� Each step thereby doubles the prob�
ability that the ensuing step will be the last� while it halves the probability
per unit of time that the next step is taken� Consequently� the probability
per unit of time for the walk to terminate is constant during the walk� This
means

Qt �
�
�t
exp��t��t� �
�

Using the exact result in Eq� ���� we have the estimates

�t � N ���

and

Qt �
�

N
exp��t�N� ���
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This last equation shows that NQt remains a �nite function of t�N in the
limit N �	� and its k�th moment is proportional to Nk� In particular we
see that the standard deviation

��t� � N ���

scales like the average �t� This is in contrast to the scaling laws found for the
average length of walks and its standard deviation� see appendices B and C�

In appendix D we show how this section�s estimates are modi�ed when
we account properly for  uctuations and their correlations� The result for
NQt is shown in �gure ��

� Master Equation

Because each species evolves by mutation of randomly chosen genes in a
random �tness landscape� its path of evolution through con�guration space
can be replaced by a random walk� to leading order in N � see appendix A�
This observation causes vast simpli�cations in the description of the system�s
dynamics� which� on the other hand� is exact then only to leading order in
N � But that is a small price to pay� as we imagine N is large anyway�

We include two additional simpli�cations in the description� instead of
keeping �xed the C randomly chosen foreign genes that any species depends
on� we re�choose them at random any time we need them� i� e� we exchange
�quenched� randomness for �annealed�� If the total number of species in the
ecosystem is e
ectively in�nite � and this assumption is the second sim�
pli�cation we add to the description � then there is no di
erence between
results based on quenched� respectively annealed� randomness� This is be�
cause the set of species that any species depends on� directly or via other
species� forms a C�branched tree� each node of the tree representing a species�
each oriented branch a dependency� So while our exchange of quenched for
annealed randomness amounts to a mean��eld approximation� we neverthe�
less expect the mean��eld theory to be exact� because the system e
ectively
is in�nite dimensional through its random connections�

The second assumption� an e
ectively in�nite number of species in the
ecosystem� makes a description in terms of density functions possible� let
�M �F � t� denote the relative number of species which have �tness F and M
less �t one�mutant neighbors at time t� A change in a random gene will then
lead to higher �tness � and therefore be accepted � with probability

A�t� �
NX

M��

�� �M�N�
Z �

�
dF�M�F � t� �	�

because � � M�N is the probability that the change of one random gene
leads to higher �tness in a species which has M less �t one�mutant neighbors�
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We note that A�t� also is the rate at which mutations are accepted by the
ecology from the constant rate of mutations o
ered� So A�t� is a measure of
the evolutionary activity in the ecology� We shall �nd it a useful quantity
below� and refer to it as the activity�

The probability that such a mutation is accepted and results in �tness F
for the changed species� is

!�F � t� �
Z F

�
dF ���F �� t�� ���

where

��F �� t� �
�

�� F �

NX
M��

���M�N��M �F �� t� ���

is the contribution to this probability from species with �tness F �� This
contribution does not depend on F as long as F 
 F �� This is so because we
have assumed the �tness landscape is uncorrelated� The factor �����F �� in
this expression is the normalization factor for the constant distribution for
F with F 
 F ��

With this notation we can write down the master equation for �M�F � t��

�

�t
�M�F � t� � ���� M

N
��M �F � t� �BM�N�F �!�F � t�

�C

N
A�t��M�F � t� �

C

N
A�t�BM�N�F � ����

This non�linear integro�di
erential equation expresses that the relative num�
ber of species with �tness F � and M less �t ��mutant neighbors� changes for
four di
erent reasons� corresponding to the four terms on the right�hand�side
of Eq� ����� The time�scale in Eq� ���� has been chosen such that in one unit
of time one mutation is o
ered per species � to be accepted or rejected�

The �rst term on the right�hand�side of Eq� ���� is the rate at which
species with �tness F � and M less �t neighbors� mutate to higher �tness�

The second term on the right�hand�side is a rate of change of less �t
species into species with �tness F and number of less �t neighbors M � The
function BM�N�F � is the binomial distribution with mean F �

BM�N�F � �
N "

M " �N �M�"
FM��� F �N�M ����

It represents the probability that M out of N one�mutant neighbors to a
genome with �tness F are less �t than F � This probability is binomially
distributed because the �tness landscape is random� with �tness F equidis�
tributed in the interval ��� �� �����

The third term is a rate of loss of species with �tness F�M � This loss
is not caused by a change in the genes of the species lost� but by a change

	



in its �tness due to genetic changes in other species� Since the C genes in
other species that any species depends on� are randomly chosen� this change
is the product of the probability A�t� that a mutation in a random species
is accepted and the probability C�N�M �F � t� that the gene it occurs in is a
gene on which a species with �tness F�M depends�

The fourth term on the right�hand�side of Eq� ���� is� like the second term�
a rate of change of species into species with �tness F�M � It complements
the third term� species that change �tness due to genetic changes in other
species� can change their �tness to F with equidistributed F � When they
have done that� they have M less �t neighbors with probability BM�N�F ��

We note that Eq� ���� conserves the total probability� as it should�

�

�t

Z �

�
dF

NX
M��

�M�F � t� � �	 ����

� Estimating the Phase Structure

Clearly� a static solution to Eq� ���� is provided by

�M�F � t� � 
M�N��F �� ��
�

for any distribution ��F �� This solution corresponds to all species being at
local �tness maxima� In the language of ��� �� 
�� borrowed from economics�
the system is at a Nash equilibrium� Whether this �xed point for the dynam�
ics is attractive or repulsive with respect to perturbations of �M �F �� depends
on the value of C� For C � � it is attractive� since in this case each species
evolves in a �xed landscape� and consequently arrives at a local maximum�
At the other extreme� C�N � ��

�M �F � t� � BM�N�F � ����

is a static solution to leading order in N�C� It corresponds to totally random
�tness F � and maximum activity A � ����

At intermediate values of C� we can easily imagine the existence of a
static solution with a �nite activity A corresponding to a certain fraction
of all species being in states that evolve� The activity is maintained by a
balance between the rate at which species evolve towards �tness maxima�
and the rate at which species are set back in evolution by their dependence
on other species� We expect the activity A to increase with C�

On the other hand� we can also imagine that C can be too small to sustain
a �nite activity� In appendix B we show that isolated species on the average
change

�� � logN � �	����
			 �O�N��� ����
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genes in their evolution to a local maximum� So do species in the NKC�model
studied here� if they are not set back in evolution by their dependence on
other species� Thus �� is the minimal number of genetic changes per species
by which the NKC�model can evolve to the �xed point Eq� ��
�� If� in doing
so� each species on the average sets back less �or more� than one other species
in evolution� the �xed point Eq� ��
� will �or will not� be attractive�

We can make the argument more precise by making it perturbative� sup�
pose for a given value of C the system has been arranged to be at the �xed
point solution Eq� ��
�� and we change the �tness of one species to a random
value� Since the other species do not evolve� the one singled out evolves as
an isolated species� and arrives at a �tness maximum after having changed
typically �� of its genes� But the �tness of other species depend on the state
of genes in the species that evolved� typically C other species will each de�
pend on one gene� If any of these C genes were among the �� genes that
changed� the species depending on them were set back in evolution� and are
now evolving� possibly setting back yet other species in their evolution� The
question then is� if the chain reaction set o
 this way is sub� or super�critical�
Will it die out or run away# The value for C which separates these two sit�
uations we call critical� and write it Ccrit� It is the value for which� on the
average� one out of C randomly chosen genes is among the �� changed genes�
Thus � � Ccrit���N � or

Ccrit � N��� ����

We conclude that the species collectively evolve each to their own local �tness
maximum and remain there with vanishing activity A for C � Ccrit� while
they evolve to a state with �nite activity A � ��� for C 
 Ccrit� The
asymptotic value of the activity A for t � 	 can consequently be used as
an order parameter distinguishing the two phases�

The arguments used in this section were based on average values� While
we would not expect  uctuations to change the qualitative picture� they
might change the coe�cient in a scaling law like Eq� ����� Actually they do
not� The perturbative result is exact� as we see in appendix E� where we also
�nd the activity as a function of c � C�N � This activity is shown in �gure 

for N � �� and N � ���� In appendix F� the systems relaxation time to the
steady state is calculated for both phases� and found to diverge with mean
�eld exponent �� at Ccrit�

	 Summary
 Discussion
 Perspectives


For species evolving in isolation� we have obtained rigorous results to leading
order in ��N for the length and duration of adaptive walks in a special case
of Kau
man�s NK�model� We found the average length scales as logN � and
so does the variance of the distribution of lengths� We have also obtained
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analytical expressions for the prefactors in these scaling laws� and found that
to leading order in �� logN � lengths are Poisson distributed�

For the duration of adaptive walk� we found qualitatively di
erent re�
sults� While the average duration is proportional to N with a constant of
proportionality we have found analytically� the variance of the duration is
proportional to N�� again with analytically known coe�cient� So while typ�
ical lengths of adaptive walks are relatively close to their average� typical
durations vary over a range with magnitude equal to their average� We ex�
tended this result by showing analytically that in the limit N � 	� t�N
has a �nite distribution� Numerically� we found this distribution falls o

exponentially for t�N 
 ��

For co�evolving species� we have shown analytically that a variant of
Kau
man�s NKC�model has two phases� a frozen phase in which all species
eventually stop evolving� because they all reach local �tness maxima� and
a chaotic phase characterized by a balance between the number of species
at local �tness maxima� and the number evolving towards such maxima�
and changing the �tness landscape of other species in the process� As order
parameter we used the asymptotic activity� the fraction of species chang�
ing genetically per unit of time� We gave a closed expression determining
the asymptotic activity as an implicit function of the connectivity between
species� We also gave expressions for the system�s relaxation time to the
asymptotic activity� On the line separating the two phases in the system�s
parameter space� the relaxation time diverges with mean �eld exponent ���

We obtained these results in a mean �eld description of the model� keep�
ing only leading terms in an expansion in ��N � N being the number of genes
per species� Since N typically is very large� however� our leading�order ap�
proximation in N is very good� We do not expect any qualitative di
erences
between our leading order ��N �expansion results and exact results as con�
cerns the existence of the two phases� the location of the phase boundary�
and the relaxation time� As for the exponent �� for the divergence of the
relaxation time� we have argued that it is an exact result� These results all
depend on the number of species S being e
ectively in�nite� and certainly
much larger than both the number of genes N and the connectivity C�

It may well be possible to obtain other analytical results for the NKC�
model� using the methods of the present paper� For example one may try to
�nd the Lyapunov exponents of the chaotic phase�

As for the purpose of our investigation � the demonstration of self�orga�
nized criticality in the NKC�model � we see no way that the maximally
rugged variant studied here can be driven with perturbations from its frozen
phase into a �poised�� critical state� as was done in ���� with Conway�s Game

of Life� The maximally rugged variant cannot be �pumped up� to a �poised�
state � at least not in the mean �eld description � because after the model
has responded to a perturbation it is back in the same state as it was before
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the perturbation was applied� This is not necessarily a short�coming of the
mean �eld description� It willingly describes for example the build�up of the
self�organized critical state of conservative sand pile models ����� Rather� it is
due to the maximal ruggedness of the �tness landscape� Its total absence of
correlations makes any perturbation of a species wipe out all memory of the
�tness the species had acquired before the perturbation was applied� There
is� so to speak� no such thing as a perturbation of �tness in the maximally
rugged case� Genetic con�gurations may be perturbed by having just one or
a few genes changed� But that typically results in a �nite change of �tness
in a maximally rugged landscape�

On the other hand� maximal ruggedness of the model�s �tness landscape
is crucial for our ability to derive analytical results� and these results are
important in view of the di�culty of a numerical simulation of the model�
So we are reluctant to abandon it� That leaves us with another� biologically
appealing possibility� we can make the model more realistic �and computa�
tionally even more di�cult� by treating N and C as dynamical parameters
of the individual species� add criteria for their evolutionary change� and ask
if evolution drives their averages onto the critical line found in the present
paper� That study has yet to be done� Methods and results that appear to
make such an undertaking feasible� were presented here�
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Appendix A� Adaptive and random walks

In this appendix we argue that if the dimension N of con�guration space is
su�ciently large compared to the length of a �nite path in that space� we
cannot distinguish� to leading order in N � between the path of a random
walk and the path of an adaptive walk in a random �tness landscape�

Assume that the dimension N of con�guration space is much larger than
the length of adaptive walks in that space� Then we can neglect the fact that
the adaptive walk avoids itself and all con�gurations previously probed by
it� The reasoning goes as follows� Since mutations occur on random genes�
a step is added to the walk by probing random directions in con�guration
space� until one leading to higher �tness is found� Then the walk is extended
one step in that direction� and the procedure repeated from the new position
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in con�guration space� By this algorithm� correlations between successive
directions chosen by the walk are of order ��N � So to leading order in
an expansion in ��N successive directions are uncorrelated� and we have a
random walk at hand� Successive directions are also di�erent to leading
order� Consequently� if the length of the walk is much smaller than

p
N � all

directions chosen by it are di
erent� and it obviously does not self�intersect
��	��

By assuming that the adaptive walk never probes a site in con�guration
space that it has probed before� we found� in section 
� that walks have length
� logN � which is much smaller than

p
N for N large� We conclude that our

assumption that the walk is short compared to N is self�consistent correct�
We may ask whether we can �nd all sub�leading terms in an expansion

in ��N without knowing the entire history of an adaptive walk� The answer
is negative�

An adaptive walk does not back�track� while a random walk does with
probability � ��N per step� We can handle a random walk without back�
tracking analytically� But back�tracking is not the only ��N �e
ect distin�
guishing an adaptive walk from a random one� however� An adaptive walk
also forms no closed loops� and does not visit sites in con�guration space that
were probed previously� but not visited for lack of �tness� Thus an adaptive
walk is not only self�avoiding� but also avoids many one�mutant neighbors to
itself� A short random walk visits such sites with probability � ��N � This
is seen as follows�

Self�intersection by a random walk requires the formation of a closed loop
by the walk� i�e� at least two steps� of opposite orientation� must be taken
in each dimension in which the loop extends� So the probability for the
formation of a closed loop of length �� on a random walk of length � is� to
leading order� suppressed by a factor �� � ����N ����� where �� 
 �� Nearest
neighbors to the walk can be visited in one step less� i�e� with probability
�� � ����N ������� For �� � � this probability is � ��N � So to leading order
in ��N we can treat the adaptive walk as a random walk� We can also
treat it as a random walk without back�tracking� thereby describing some of
the ��N �e
ects at play� But a full description of ��N e
ects requires more
information than the walk�s current position in con�guration space�

In summary� to leading order in ��N we may add a step to the adaptive
walk by treating the one�mutant neighbors to the current con�gurations as if
they had never been visited or probed before� Consequently� the probability
that M of these N neighbors are less �t than the current con�guration� is
binomial� BM�N�F �� where F is the �tness of the current con�guration� If we
take into account that the previous con�guration is known to be less �t� the
probability is BM���N���F �� as given in Eq� ��	��

When we forbid back�tracking� our treatment is exact for a con�guration
space which is a Cayley tree with coordination number N � It should not be

��



confused with an $annealed� �tness landscape� as an approximation to the
$quenched� landscape we start out with� Not if $annealed� means re�choosing
the �tness of a con�guration every time it is probed by the adaptive walk� If
we did that� we would have no maxima� since a higher �tness could always
be attained by su�ciently many trials� The picture of an $annealed� �tness
landscape applies only in the sense that the �tnesses of all N �or N � ��
neighbors to a con�guration are re�chosen every time that con�guration is
visited� and kept �xed during the visit� thereby possibly making the visit
permanent�

Appendix B� The length of walks

When duration is not of interest� but length is� the simplest quantity to work
with is the probability density p��F � that an adaptive walk contains �at least�
� steps� and has �tness F after these � steps� Evolution by random mutations
through �tter one�mutant neighbors can be described approximately by a
recursion relation�

p����F � �
Z F

�
dF �

� � F �N��

�� F �
p��F

�� for � � �� �� 	 	 	 ��	�

This recursion relation expresses that �tness F is acquired in � � � evolu�
tionary steps by acquiring any lower �tness F � in � steps� and taking one
more step to �tness F � Taking the last step requires that not all N one�
mutant neighbors in con�guration space are less �t� One is � the one that
was reached after � � � steps� The remaining N � � neighbors have �tness
less than F �� each with probability F �� since their �tness is random� Here
we assume that they were not probed previously by the path of evolution�
This assumption is only approximately true� so Eq� ��	� is an approximation�
Within this approximation� the probability that not all neighbors are less �t
is � � F �N��� When this is the case� the �� � ��th evolutionary step will be
taken� and leads to any �tness above F � with equal probability� hence to
�tness F in the interval dF � with probability dF ����� F ���

The approximation we have made with Eq� ��	� relies on N being large�
While the power N � � on F � excludes evolutionary back�tracking� Eq� ��	�
does not exclude that the path of evolution intersects itself or visits other
points in con�guration space that it probed and rejected at an earlier time�
Such intersections are forbidden by the dynamics� which forces the path to
always higher degrees of �tness in a �xed landscape� or to stop at a local
maximum� But in Eq� ��	�� the N � � one�mutant neighbors which are not
a state�s immediate predecessor in evolution� are all treated as if they were
never probed before by the evolutionary process� Which some of them may
have been� in which case we know that their �tness is lower than the current
one� So Eq� ��	� yields an upper bound for the true value of p��F �� because

�




the exact relation has a power lower than or equal to N � �� where Eq� ��	�
has N � �� This exact power depends on the entire path of evolution up to
the currents state� so the approximation made with Eq� ��	� causes a vast
simpli�cation of the problem� In the appendix we give arguments that this
approximation is correct to leading order in an expansion in ��N �

In view of the further approximation considered below� all we really need
are results to leading order in N � But since we can solve Eq� ��	� as it
stands � i�e� with back�tracking forbidden� and self�intersection permitted
� we shall do that for de�niteness�

Introducing the monotonic function

HN �F � �
NX
k��

�

k
F k ����

a change of variable to H � HN���F � in Eq� ��	� gives

p����H� �
Z H

�
dH � p��H

�� for � � �� �� 	 	 	 � ����

which is easily iterated to give

p��H� �
�

�� � ��"

Z H

�
dH � �H �H �����p��H

��	 ����

For de�niteness and notational convenience� we let all adaptive walks begin
in the least �t state� characterized by F � �� Since there is zero probability
for this state being a local maximum of �tness� the �rst step of the adaptive
walk is always taken� For notational convenience� we let � denote the number
of steps taken in excess of this �rst step� Then the initial condition reads

p���F � � 
�F � ����

This rather eccentric choice of initial condition assures that the walk has a
predecessor for all values of � 
 �� This makes formulas look simpler� and
makes Eq� ��	� and Eq� ���� valid also for � � ��� They have the unique
solution

p��F � �
�

�"
HN���F �

� for � � �� �� �� 	 	 	 ����

Obviously� for �xed F � �

HN �F ��� log�� � F � for N �	� ��
�

while for F � �� HN ��� are the harmonic numbers discussed by Knuth in
����

HN ��� �
NX
k��

�

k
� ��N � �� � �E � logN � �E �O�N���� ����

��



where ��x� � d log %�x��dx� and �E � �	�		�����			 is Euler�s constant� For
general F we note that

HN �F � � li�FN���� log�� log�F �� �O�N��� ����

where li is the logarithmic integral� We shall need that

HN ��� x�N� � logN � �E � Ein�x� �O�N��� for x � O���� ����

where Ein�x� is an entire function related to the exponential integral �����

Ein�x� �
Z x

�
dt
� � e�t

t
� E��x� � log x� �E ��	�

As stated above� Eq� ��	� is the simplest relation we can write down for
a probability describing the length of the adaptive walks considered here� in
the approximation speci�ed� The probability that a walk contains �at least�
� steps is obtained from p��F � by integration over F �

P� �
Z �

�
dFp��F � �

�

�"

Z �

�
dFHN���F �

�

�
�

�"

N��X
k������k���

�

k� � � � k��k� � � � �� k� � ��
for � � �� �� �� 	 	 	 ����

Integration over F on both sides in Eq� ��	� gives

P��� � P� �
Z �

�
dFFN�� p��F � ����

which obviously cannot be made into a closed equation for P�� The remaining
integral in Eq� ���� is the probability that an adaptive walk contains exactly
� steps� This is a quantity of interest� We introduce the notation Q� for it�
and q��F � for the corresponding probability density that a walk stops with
�tness F after exactly � steps�

q��F � � FN��p��F � � FN�� �

�"
HN���F �

� for � � �� �� �� 	 	 	 �
��

Q� �
Z �

�
dF q��F � �

�

�"

Z �

�
dFFN��HN���F �

�

�
�

�"

N��X
k������k���

�

k� � � � k��k� � � � �� k� �N�
for � � �� �� �� 	 	 	�
��

From Eq� ���� follows
Q� � P� � P��� �
��

Since Eq� ���� implies
Q�� � �� P� � �� �

�

��



normalization of q��F � and Q� follows trivially from Eq� �
���

�X
���

Z �

�
dF q��F � �

�X
���

Q� �
�X
���

�P� � P���� � P� � � �
��

Here we have used lim��� P� � �� and we have set the upper limit on the
sum over � to in�nity for convenience� Strictly speaking� this upper limit is
AN � the number of points in con�guration space� We shall see below that
typical values for � are of order logN � and much larger values of � occur with
probabilities that are more than exponentially suppressed� So the e
ect of
this change in upper limit is truly negligible�

Inserting Eq� �
�� in Eq� �
�� and summing over �� we see that normal�
ization means Z �

�
dFFN�� exp �HN���F �� � � �
��

for any positive integer N � This identity is exact� and may also be proven
directly� we leave that for the reader�s entertainment�

The generating function for the probabilities Q� reads

&Q��� �
�X
���

��Q� �
Z �

�
dFFN�� exp ��HN���F �� 	 �
��

Despite our ability to evaluate the integral in Eq� �
�� we have not been able
to evaluate the integral in Eq� �
�� for general �� But as we have already
neglected terms of sub�leading order in ��N � we may continue to do so with
no further loss of generality� To this end we write F � ��x�N � and observe
that FN � exp��x� �O�x��N�� Consequently� the integrand in Eq� �
�� is
negligible unless x � �� and� to leading order in ��N � we have for &Q���� Q��
and its �rst moment ���

&Q��� � N���
Z
�

�
dx e�x���Ein�x���E� �
	�

&Q��� � � �
��

Q� �
�

N�"

Z
�

�
dx e�x �logN � �E � Ein�x���

�
�

N�"

�
�logN�� �O��logN�����

�
�
��

�� �
�X
���

�Q� �
dQ

d�
��� � logN � �

��nite�
� �O�N���	 ����

Here
�
��nite�
� �

Z
�

�
dx ��E � Ein�x�� e�x��E�Ein�x� � �	����
			 ����

is a constant that we have not been able to express in terms of known con�
stants� Our results for ��� and for �� given in Eq� �
��� agree with the
two�digit numerical results given in ����

��



Eq� �
�� shows that to leading order in logN � Q� is a Poisson distribu�
tion� This simple results has a simple explanation� the Poisson distribution
is obtained because all adaptive walks terminate with essentially the same
�tness F � F belongs to an interval of width � ��N at F � �� This is seen
from our rewriting

R � dFFN�� as ��N
R
� dx exp��x�� Thus� in the interval

��� ��� NFN�� is almost a 
�function with support at F � �� If we replace it
with that in the formulas above� we arrive at a Poisson distribution�

Appendix C� Q��s Poisson behaviour

In this appendix we elaborate on Q��s similarity with a Poisson distribution�
and compare it with such distributions for various values of N �

With the notation

h	 	 	i �
Z �

�
dF q�F � 	 	 	 � ����

where

q�F � �
�X
���

q��F � � FN�� eHN���F � ��
�

is the probability density that an adaptive walk terminates at a local �tness
maximum with �tness F � we have a positive measure on the �tness interval
��� ��� Eq� �
�� shows that this measure is normalized� We write the integral
in Eq� �
�� in terms of this measure and cumulant�expand it�

&Q��� � he�����HN��i
� exp

�
he�����HN�� � �ic

�
� exp

�
��� ���� �

�

�
�� � ���hH�

N��ic �
�


"
��� ��	hH	

N��ic 	 	 	
�
����

where the �rst cumulants are

hHN��ic � hHN��i � �� � logN � �
��nite�
� �O�N��� ����D

H�
N��

E
c

�
D
�HN�� � ���

�
E
� �	��	

			 �O�N��� ����D

H	
N��

E
c

�
D
�HN�� � ���

	
E
� ��	��
	�			 �O�N��� ��	�D

H

N��

E
c

�
D
�HN�� � ���



E
� 


D
�HN�� � ���

�
E�

� �	�
���			 �O�N��� ����

	 	 	

Here we have used that to leading order in ��N these expectation values
receive contributions only from values of F obeying F � ��x�N with x � ��

i�e� where HN���F ���� � �E�Ein�x�����nite�
� � Consequently� all cumulants

beyond the �rst are � �� while the �rst� ��� is � logN � Neglecting cumulants

�	



higher than the �rst in Eq� ����� we arrive at the generating function for a
Poisson distribution with the same mean� ��� as Q� has�

&Q��� � exp���� ����� ����

Figure � shows Q� against � for N � ��� ���� ����� and ������ as open
symbols connected by lines� The lines are only meant to guide the eye� Q�

was found by numerical integration of the expressions for Q� deriving from
Eq� �
��� The values for the Poisson distributions with the same mean values
are shown as �lled circles� which in most cases fall within the open symbols�
This agreement is rather striking� It is not just due to the central limit
theorem making both Q� and the Poisson distribution well approximated
by the same Gaussian distribution� hence by each other� This is illustrated
in �gure � for the case of N � ��� the dashed line shows the Gaussian
distribution with the same mean and variance as Q� has� Clearly� it does not
approximate Q�� shown as open circles� as well as the Poisson distribution
with the same mean as Q�� shown as �lled circles� In addition to that it has
non�negligible support for negative values of ��

We can also compare Q��s moments� �n� with the moments of the Poisson
distribution with the same mean� ���

�� � hHN��i � logN � �
��nite�
� ����

�� � �� � hH�
N��ic � �� � �	��	

			 ����

�	 � �� � hH�
N��ic � hH	

N��ic � �� � �	��
�
			 ����

�
 � �� � hH�
N��ic � 
��� � hH�

N��ic�� � hH	
N��ic � hH


N��ic
� �� � �	��	

			� 
��� � �	��	

			�� � �	�����			 ��
�

As expected from Eq� ����� we see that when we neglect cumulants beyond
the �rst� the n�th moment� �n� depends on the �rst moment� ��� as the
n�th moment of a Poisson distribution does� We also see that this neglect
introduces an error of just a few percent in the moments shown for N 
 ����
We expect this error to increase with the order n of the moment �n� and
know that it decreases as �� logN �

Appendix D� The duration of walks

Let p��M �t�F � denote the probability that an adaptive walk at time t has
proceeded � steps� thereby reaching a point in con�guration space having
�tness F and M less �t neighbors� The time�evolution of p��M �t�F � is found
as follows� As above� we neglect the fact that an adaptive walk cannot
intersect itself or any site that was previously probed by its evolution and
discarded for being less �t� As explained in the appendix� this is a leading
order approximation in an expansion in ��N � Within this approximation�
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but explicitly forbidding back�tracking� p��M �t�F ��s development in time is
given by

p��M �t���F � �
M

N
p��M �t�F � �BM���N���F �!����t�F � ����

where

!��t�F � �
Z F

�
dF � ���t�F

�� ����

and

���t�F � �
�

�� F

NX
M��

�
� � M

N

�
p��M �t�F � ����

Eq� ���� expresses that an adaptive walk has length �� �tness F � and number
of less �t neighbors M at time t�� for one of two mutually exclusive reasons�
it was either characterized by these values at time t� and took no step between
time t and time t� � � this happens with the probability given as the �rst
term on the right�hand�side in Eq� ���� � or a step was taken between time
t and time t��� and the adaptive walk arrived at values ��� F�M� with that
step � this happens with the probability given as the second term on the
right�hand�side of Eq� ����� !����t�F � is the transition probability density at
time t to �tness F from less �t one�mutant neighbor con�gurations arrived
at in � � � steps� It is an integral over F � � F of �����t�F

��� the transition
probability density at time t from �tness F � arrived at in � � � steps to any
more �t one�mutant neighbor con�guration�

A con�guration with �tness F � arrived at from a less �t con�guration�
will have a total of M less �t neighbor con�gurations� when M � � of the
N�� new neighbor con�gurations are less �t� This happens with binomially
distributed probability�

BM���N���F � �

�
N � �
M � �

�
FM����� F �N�M � ��	�

when we treat the landscape�s quenched randomness as if the one�mutant
neighborhood of any con�guration arrived at is �annealed�� thereby allowing
the adaptive walk to self�intersect� with the exception that back�tracking
remains forbidden�

As initial condition for Eq� ���� we choose as before� with no essential loss
of generality� to let the adaptive walk start out in the least �t con�guration�
at a time that is chosen to be �� for notational convenience� We let � denote
the number of steps taken in excess to the �rst step� which is always taken�
Then the initial condition reads

p��M ����F � � 
���� 
M�� 
�F �	 ����

Inserted in Eq� ����� this initial condition gives the equivalent initial condition

p��M ���F � � BM���N���F � 
��� ����

��



Again our rather eccentric choice of initial condition assures that the walk
has a predecessor at t � �� as at all later times� This makes formulas look
simpler�

The simpler Eq� ��	� is contained in Eq� ����� the probability that an
adaptive walk reaches length � and �tness F at time t is !����t���F �� Conse�
quently� the probability that it reaches length � and �tness F at all� denoted
p��F � in appendix B� is

p��F � �
�X
t��

!����t���F � for � 
 �	 ����

Using this with Eq� ����� one obtains an equation for p��F �� Eq� ��	��
Eq� ���� is a linear integro�di
erence equation� The fact that it is non�

local in F does not prevent its solution� since it can be made local by appro�
priate di
erentiation after F � Introducing the generating function

&pM ��� F � � � �
�X
���

��
�X
t��

� t p��M �t�F � ����

and the corresponding generating functions for transition probability densi�
ties

&���� F � � � �
�

� � F

NX
M��

�� �M�N�&pM ��� F � � � ����

and
&!��� F � � � �

Z F

�
dF � &���� F �� � �� ��
�

the initial condition� Eq� ����� reads

&pM ��� F � �� � BM���N���F � ����

and Eq� ���� itself� after a minor rearrangement� reads

&pM ��� F � � � �
N

N � �M
BM���N���F �

�
� � �� &!��� F � � �

�
	 ����

Consequently�

&���� F � � � � hN���F � � ��� � �� &!��� F � � ��� ����

where we have introduced

hN���F � � � �
�

�� F

N��X
M��

N �M

N � �M
BM���N���F �

�
N��X
M��

N � �

N � �M
BM���N���F �

�
N � �

N � �

�

�� F
�F��� �N� �� � �N�� �F �	 ��	�

��



Here �F� is Gauss� hypergeometric function� For later use� we note that

�hN�����x�N � � � � �N ���x���N����
���e�x����N��������x��O�N����

����
where � is the incomplete gamma�function� We shall also need the function

HN �F � � � �
Z F

�
dF �hN �F

�� � � ����

and make contact with appendix B by noting that

HN �F � �� � HN �F �	 �	��

For later use� we note that

�HN�����x�N � ���z�N���� � logN�����z���E�I�x� z��O�N���� �	��

when x � � and z � �� and we have introduced�

I�x� z� �
Z �

�
dy yz

�� e�x���y�

� � y
� �E �	��

I�x� �� � Ein�x�� �E 	 �	
�

Eq� ���� is solved by

&���� F � � � � hN���F � � � exp���HN���F� � ��� �	��

and consequently

&pM ��� F � � � �
NBM���N���F �

N � �M
exp���HN���F� � ��	 �	��

In this result � only occurs multiplied by � � This is because in the series
expansion of this result each power of � represents one step taken in con�gu�
ration space by the adaptive walk� and each such step takes one unit of time�
represented by one power of � � Powers of � not occurring in conjunction with
�� on the other hand� represent time�steps during which the adaptive walk
did not progress�

The relation between length and duration of adaptive walks is contained
in

p��t �
Z �

�
dF

NX
M��

p��M �t�F � �	��

and therefore in

&p��� � � �
Z �

�
dF

NX
M��

&pM ��� F � � � �
�

��

�
�

��� � ��
� �

�
�O�N��� �		�

��



The generating function at time t 
 ��

&pt��� �
�X
���

�� p��t � �	��

is obtained from &p��� � � via the relation

&pt��� �
�

��i

I
d�

� t��
&p��� � � �

�

��i�

I
d�

� t��

�
�

��� � ��
� �

�
�O�N���

�
sin����

��
B��� �� � � t� �� �O�N���� �	��

where the closed path of integration in the complex � �plane encircles � � �
once in the positive direction� Using Cauchy�s theorem� the last identity was
established by moving the path to lie along the integrand�s branch cut on the
real axis� � 
 �� The function B�x� y� is the beta�function� Euler�s integral
of the �rst kind� Notice that the normalization condition

&pt��� �
�X
���

p��t � � � t 
 � ����

is satis�ed by the result in Eq� �	��� The same result gives� to leading order
in ��N � that

����t �
�X
���

� p��t �
d&pt���

d�
� ��t� �� � �E � �

� log t� �E � � �O�t��� ����

and

��
t ��� � � ����t � �����t � ��t� �� � �E �

t��X
k��

�

k�

� log t� �E � ���� �O�t��� ����

Thus we see our estimate con�rmed� the average length of an adaptive walk
grows logarithmically with time� Furthermore� we see that the variance of
the length grows like the average length� like for a biased random walk�
This similarity is no coincidence� since the adaptive walk in many respects
resembles a simple� biased random walk�

In the last identity in Eq� �		� it was tacitly assumed that N itself was
the only quantity of order N � Consequently� the time�dependence found
from this identity is reliable only when t is far from being of order N � This
restriction needs not prevent t from being large and the asymptotic forms in
Eq� ���� and Eq� ���� from being valid�

When t � N � walks reach local maxima and terminate� according to our
estimate for their duration� This� of course� is an average result� For example

��



there is a probability � ��N that an adaptive walk terminates already after
its �rst step� Now let us substantiate the estimate� the probability that a
walk terminates with length � and �tness F at time t is

q��t�F � � p��N �t�F �� p��N �t���F �	 ��
�

Contact is made with appendix B by observing

q��F � �
�X
t��

q��t�F � � lim
t��

p��N �t�F �	 ����

We introduce

Q��t �
Z �

�
dF q��t�F � ����

and

&Q��� � � �
�X
���

��
�X
t��

� tQ��t ����

and have

&Q��� � � � �� � � �
Z �

�
dF &pN ��� F � � � �

Z �

�
dFFN�� exp���HN���F � � ��

� e���	���z���E �F��� z� �O�N���� ��	�

where Eq� �	�� was used in the second identity� and F � � � x�N � � �
�� � z�N���� x� z � �� in the third� We have introduced the N �independent
function

F��� z� �
Z
�

�
dx e�x��I�x�z�	 ����

Eq� ��	� is the time�dependent extension of Eq� �
��� From the generating
function in Eq� ��	� we derive the average time it takes for an adaptive walk
to reach a local maximum�

�t �
�X

��t��

tQ��t �
� &Q

��
��� ��

� hHN���F � �� �
�HN��

��
�F � ��i

� h
Z F

�
dF �

N��X
M��

N�N � ��

�N �M��
BM���N���F

��i ����

� N

�
��

�
� �F

�z
��� ��

�
�O���

� �	��
�� 	 	 	 N �O���
�t� � �t� � N�

�
	���
� � ��F

�z�
��� �� �

�
�F
�z

��

��� ��



A �O�N� ����

� �		�	�� 	 	 	 N� �O�N� ����

�




where � is Riemann�s zeta�function� We have not been able to relate the
derivatives of F in these equations to known mathematical constants�

Comparing this appendix�s results with those of appendix B� we notice
a big di
erence between the length and the duration of adaptive walks in a
random �tness landscape� while typical lengths are relatively closer to the
average length� the larger the system size N is� typical durations can di
er
from the average by an amount the size of this average� This picture is
con�rmed by the following expression for Qt� the probability that a walk has
duration t�

Qt �
�

��i

I
d�

� ��t
&Q��� � �

�
�

��iN

I
dz e

t

N
z�	���z���EF��� z�	 ����

Here the closed path of integration in the complex � �plane encircles � � �
once in the positive direction� while a similar path of integration in the
complex z�plane� obtained by the substitution z � N���� � ��� has been
moved to lie along the negative real axis� That is the only place in the
z�plane� where F��� z� is not analytic� We have not found a more closed
analytical expression for Qt in the large�N limit than Eq� ����� Eq� ����
su�ces� however� since it shows that for t�N � � we have Qt � N��� Hence�
in the limit N �	� NQt is a �nite function of the variable t�N � We have
found this function numerically� Its graph is shown in �gure 
 as the fully
drawn line� The dashed line shows the graph for the estimate in Eq� �
�
with the exact value in Eq� ���� used for �t� From the �gure it seems that for
t�N 
 �� Qt is essentially an exponential function� or at least exponentially
bounded� though other possibilities cannot be eliminated on the basis of the
�gure�

Appendix E� Calculating the Phase Structure

Let us denote a stationary� or �xed point� solution to Eq� ���� by ��M �F ��
With the notation A� � A����� �� � ������ !� � !����� and c � C�N � the
time�independent version of Eq� ���� can be rewritten

��M�F � �
N

N �M � CA�
BM�N�F ��cA

� � !��F �� ��
�

Since A� and !� both depend on ��� Eq� ��
� is a non�linear integral equation
for ��M �F �� We can solve it� nevertheless� by temporarily treating A� as a
constant� to be determined by self�consistency in the end� This is done in the
following way� By multiplying both sides in Eq� ��
� with ���M�N�����F ��
and summing over M � one �nds

���F � � g�F � cA���cA� � !��F ��� ����

��



where we have introduced the function ����

g�F �x� �
�

� � F

N��X
M��

N �M

N �M �Nx
BM�N�F � � N

N��X
M��

BM�N���F �

N �M �Nx
	 ����

For later use we also introduce

G�F �x� �
Z F

�
dF � g�F ��x� ����

and

G�x� �
Z �

�
dFeG�F �x�	 ��	�

Since g and G have simple poles at x � ��� �����N � �����N � 	 	 	 � ���N �
the function G has essential singularities at these points� The graph for G�x�
is shown in �gure � for the case of N � ��� For x� O���N� or x � ��� G
simpli�es to

G�x� � �� � x� log�� � x��� ����

to leading order in ��N � The graph for this approximation is shown as the
dotted curve in �gure �� The approximation has a cut in the interval ���� ��
where G�x� has N essential singularities�

Now� remembering ���F � � d
dF
!��F �� we see Eq� ���� is solved by

!��F � � cA��eG�F �cA�� � ��	 ����

Inserting this solution in the de�nition Eq� �	� of the activity� we �nally
arrive at a self�consistency equation for A�� given c�

A� � cA���� � G�cA��� �����

This equation is solved by A� � � and by A� satisfying

c�� � �� � G�cA��	 �����

The last equation gives A� as an implicit function of c� It has a real� positive
solution A� only for

c 
 ccrit � ��� � G������ � ���� �����

where �� is given in Eq� ����� For cA� � O���N�� Eq� ����� simpli�es to
leading order in ��N to another implicit expression for A��c��

c�� � �� � �� � cA�� log�� � �cA�����	 ���
�

According to Eq� ������ A� 
 c � ccrit for c � ccrit� i� e� the critical
exponent for the order parameter A� is �� At the other extreme� for c�	�
Eq� ����� gives A� � ���� as we expect from section �� Figure 
 shows A��c�

��



for N � �� and N � ��� as fully drawn curves� The approximate expression
in Eq� ���
� is shown as the dotted curve�

For c 
 ccrit� Eq� ��
� then gives

��M�F � �
CA�

N �M � CA�
BM�N�F � exp�G�F � cA

���� �����

while for c � ccrit we have

��M �F � � 
M�NF
N exp�G�F � ���	 �����

So� as already seen in section �� the long�term dynamics of the co�evolving
species can be of two qualitatively di
erent kinds� depending on whether the
parameters C and N have values making c � C�N smaller or larger than ccrit
given above� In the �rst case� the activity A�t� dies out because all species
stop evolving as they reach local �tness maxima� This is frozen dynamics�
characterizing the frozen phase� In the second case the activity converges to
a non�zero value A�� signalling chaotic dynamics� characterizing the chaotic
phase� In this phase species also evolve towards local maxima in �tness� but
in the process of doing so� they change the �tness of other species� typically
setting them back in evolution� After a transient time� a balance is reached
where a certain fraction of species evolve� while another fraction remains at
local �tness maxima� with individual species passing from one fraction to the
other every so often�

The line C�N � ccrit dividing the �C�N��plane into two phases is critical
in the sense that the relaxation time to asymptotic behaviour diverges on
this line� as shown in appendix F�

Appendix F� Relaxation Times

In order to �nd the relaxation time to asymptotic values� we linearize Eq� ����
at its �xed point solution� We write

�M�F � t� � ��M �F � � '�M�F � t�� �����

A�t� � A� �'A�t�� ���	�

!�F � t� � !��F � � '!�F � t�� �����

��F � t� � ���F � � '��F � t�� �����

and insert these expressions in Eq� ����� By using Eq� ��
� and keeping only
terms linear in '				� we arrive at the linearized master equation

�

�t
'�M�F � t� � ���� M

N
� cA��'�M�F � t� �����

�c�BM�N�F �� ��M �F ��'A�t� �BM�N�F �'!�F � t�	

��



This equation is more easily solved by writing '�M�F � t� as a Laplace
transform�

'�M�F � t� �
Z
�

�
d� e�t�'&�M �F ���	 �����

'A�t� and '!�F � t� are linear functionals of '�M�F � t� and therefore com�
mute with Laplace transformation� So with a self�explanatory notation� the
inverse Laplace transform of Eq� ����� reads� slightly rewritten�

'&�M �F ��� �
c' &A����BM�N�F �� ��M�F �� �BM�N�F �'&!�F ���

��M�N � cA� � �
�����

By multiplying both sides of this equation with �� �M�N���� � F �� and
summing over M � one �nds

'&��F ��� � ���
�

c' &A����g�F � cA� � �� � g��F � cA
�� ��� � g�F � cA�� ��'&!�F ����

where the function g�F �x� was introduced in the previous appendix� and the
function g� has a similar de�nition�

g��F �x� �
�

� � F

N��X
M��

N �M

N �M �Nx
��M �F � �����

�
cA�

x� cA�
�g�F� cA��� g�F� x�� exp�G�F� cA���

Eq� ���
� is solved by

'&!�F ��� � �����

c' &A���eG�F �cA�
���

Z F

�
dF � e�G�F ��cA�

��� �g�F �� cA� � �� � g��F
�� cA� � ���

� c' &A���
�
�� � cA�

�
eG�F �cA��

�

where we have used the de�nition� Eq� ������ for g� to obtain the last equality�
Using

' &A��� �
Z �

�
dF '&!�F ���� �����

integration over F on both sides of Eq� ����� gives an equation for ' &A���
which is solved by ' &A��� � �� as we might expect� and by

cA� � �

�
�G�cA� � ��� G�cA��� � � ���	�

The smallest value for � solving this equation contributes with the longest
relaxation time

tchaoticrelax � ��� �����

�	



to '�M�F � t� in Eq� ������ An obvious solution is

� � cA�	 �����

A survey of G�x��s graph shows there are N � � other solutions to Eq� ���	��
one in each interval �cA��M�N� cA���M����N �� whereM � �� �� 	 	 	 � N���
So all these solutions correspond to contributions to '�M�F � t� which decay
faster in time than the mode corresponding to � � cA�� We conclude that
the relaxation time in the chaotic phase is

tchaoticrelax �
�

cA�
� �����

where A� is a function of c given implicitly by Eq� ������
Since A� � c � ccrit for c � ccrit � ��� we see from Eq� ����� that the

relaxation time diverges with exponent �� at the critical connectivity� This
typical mean��eld value for the exponent comes as no surprise� it is after
all a mean��eld description we are developing� The value for this exponent
is exact� however� in the limit S � 	 of in�nitely many species� which we
are considering� The only requirement is that each species depends on a
vanishing fraction of other species � i�e� C�S � � � and that the species
which a given species depends on were chosen at random� Whether this
randomness is quenched or annealed does not matter� This point has been
explained in detail in ���� �
� for an in this respect identical problem�

In the frozen phase� where the order parameter A� � �� Eq� ���	� shows

c�� � � � G���� �����

which for a given value of c � ccrit has N positive solutions for �� one in each
interval �cA� � M�N� cA� � �M � ���N �� where M � �� �� 	 	 	 � N � �� The
smallest solution� which determines the relaxation time� grows from � � � to
� � ��N for c decreasing from ccrit to �� So the relaxation time grows from
N to in�nity when c grows from � to ccrit� This result agrees with the average
relaxation time for isolated species found in appendix D� and the expected
increase in relaxation time with increasing coupling�

We can summarize our results for the relaxation time in the following
implicit expressions for it�

c�� � � � G��t��relax� for c � ccrit �����

c�� � � � G�t��relax� for c 
 ccrit ���
�

where the solution for trelax is obtained by using the branch of G�� charac�
terized by ���N � x �	�
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Figure Captions

Fig� � Q� versus � for N � �� ���� ��� �r�� ���� ���� and ������ ����
The connecting dashed lines are only meant to guide the eye� Poisson
distributions with the same mean values are shown with the symbol ��
In the case of N � ��� the Gaussian distribution with same mean and
variance as Q� is shown as a solid line�

Fig� � NQt versus t�N for N � 	� Fully drawn curve� exact result from
Eq� ����� Dashed curve� estimate from Eq� �
� with exact value for �t
taken from Eq� �����

Fig� � The asymptotic activity A� versus the connectivity c for N � �� and
N � ��� according to Eq� ����� �full curves� and according to Eq� ���
�
�dotted curve��

Fig� � Graph of the function G�x� de�ned in Eq� ��	� in the case of N � ��
�full curve�� and its approximation given in Eq� ���� �dotted curve��
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