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Abstract

A variant of Kauffman’s N K C-model for genetic evolution and adaption
is analysed. First, a number of results are derived for species evolving in
isolation. Next, it is shown that the evolution of interacting species belongs
to one of two phases depending on the strength of the interaction. There
is a frozen phase in which all species eventually reach local fitness maxima
and stop evolving, and there is a chaotic phase in which a self-sustaining
fraction of all species keep evolving. Individual species reach local fitness
maxima also in the chaotic phase, but eventually their fitness is changed as a
consequence of the evolution of other species, and they start evolving again.

The evolutionary activity of the steady state is a natural order parameter
for the ecosystem. Closed expressions for the value of this order parameter
and the system’s relaxation time are given. The relaxation time diverges at
the phase boundary, showing the system is critical there.

All results were obtained analytically for the maximally rugged case of
K +1= N, and to leading order in NV, the number of genes in a species.

PACS numbers: 87.10.+e, 02.50.4s, 05.40.+j, 64.60.Ht



1 Introduction

We consider a variant of a simple, proto-typical model for biological evolution
suggested by S. Kauffman [1, 2, 3, 4]: the co-evolution of abstract haploid
organisms with a single copy of chromosomes. Evolution in this model is
driven by random mutations of individual genes. FEach species evolves in
a fitness landscape which represents those aspects of its environment that
remain unchanged on the time-scale of evolution. The fitness of any species
depends on its position in its fitness landscape and on the state of other
species. Species are, so to speak, part of each others effective landscapes.
These may therefore change with time as species evolve.

It has been suggested [3] that this so-called NKC-model self-organizes
dynamically to criticality [5] and thereby provides a very simple model for
the intermittency of extinction events observed in biological evolution by
Raup [6]. The purpose of our investigation of this model is to demonstrate
its capacity for self-organization to criticality, if it is there in the model. This
article reports on some progress towards this end, in-as-much as we show that
the first prerequisite, critical behaviour, is there in the model. We may hope
then that a more realistic version of the model, suggested by our results, may
self-organize to criticality. Whether this is the case, is not addressed here.

The letters N, K, and C' in the model’s name, denote parameters for,
respectively, the number of genes in the evolving organisms, the roughness
of their fitness landscapes, and the strength of their mutual dependence.
We study the model with maximally rugged fitness landscapes, obtained for
K = N—1,s0 K does not occur as an independent parameter in the present
article. We demonstrate analytically that it possesses two phases, one phase
with dynamics governed by attractive fixed points, and another phase with
chaotic dynamics. The phases are separated by a critical line in the (N,C)-
plane at C' ~ N/log N. We have obtained closed expressions, valid anywhere
in the two phases, for the system’s relaxation time towards its asymptotic
behaviour.

Some of the analytical results we give below for species evolving in iso-
lation have been seen in numerical studies [7, 8], and derived in [9]. They
represent a natural first insight, and are included to make the presentation
self-contained. Different but related results have been obtained for the NK-
model with general K > 1 in [10].

In the body of the present article, results are derived in a heuristic man-
ner. In this way we, hopefully, give the reader a qualitative understanding
of the dynamics of the NK(*model. More stringent derivations and other
technical matters have been relegated to a number of appendices.



2 The system

We consider an ensemble of mutually dependent and evolving species, an
ecosystem. At any time, the state of any species is given by the state of
its genome. This genome contains N genes. We shall assume the genes
are binary variables, i. e. there are only two alleles, A = 2. We do not
expect our results to change in any significant way if the number of alleles is
changed, as long as it is small compared with /N in results based on expansion
in 1/N. We do not distinguish between phenotypes and genotypes, and
also neglect variations in type within a species. In real life, variation is
responsible for the very existence of evolution. In the NAC-model, however,
only this consequence of variation is modelled: evolution takes place, and
is driven by a constant rate of mutations of individual, randomly chosen
genes. If a mutation increases the fitness of a species, it is accepted, and
the entire species is changed. If a mutation does not increase the fitness,
it is rejected, and the species remains unchanged. Tie situations, with two
genetic configurations having the same fitness, do not occur (have measure
zero), due to the way we assign fitness to genetic configurations: If the time-
scale that selection works on is much faster than the time-scale for mutations,
this lends some justification to our “all or nothing” dynamics neglecting
variations [11]. Proliferation and extinction of species are both neglected in
the present article, though the model could be adapted to accommodate their
description.

The fitness f of any of the evolving species is a random function of its N
genes and of C other genes belonging to other species [12]. These C other
genes are chosen at random among the genes of other species. For a given
sample of the kind of ecosystem described here, the particular choice for these
C' genes and the random fitness function define the sample, and remain fixed
during evolution — the randomness is quenched.

The particular probability distribution p(f) used to define the fitness
function does not matter; we shall not even bother to introduce it in our
considerations below, because it turns out that it disappears again by a
transformation of variables to F' = ffoo df' p(f'). In the case where p is
uniform on the interval 0 < f < 1, we have f = F. So for convenience we
shall refer to F' as the fitness, although F' in the general case really denotes
the probability for fitness less than f. The elimination of p(f) in equations
expresses that the value f of the fitness is irrelevant; only the probability F
of being less fit matters.

We have two reasons to consider random fitness landscapes; the first
reason is a conjecture, the second is proven correct in the appendices:

1. Evolution in any fitness landscape having an effectively finite corre-
lation length, will, when viewed at sufficiently coarse-grained scales
of time and space (configuration space, i.e.) look like evolution in a



random fitness landscape. So evolution in a random fitness landscape
describes the large-scale behaviour of evolution in a large class of land-
scapes. Consequently, with this choice of landscape we are avoiding
the particular, while treating a quite general case.

2. It is technically convenient: the absence of correlations allows us to
derive a number of analytical results.

Notice that from a mathematical point of view, N might as well be the
number of positions in the primary sequence of a protein, with A = 20
denoting the 20 amino acids that potentially could occur at each position.
Or A = 4 could denote the 4 nucleotides possible at each site in a DNA
sequence of length N.

Alternatively, we may think of the V genes and their A alleles as N Potts
spins and their A possible values in an A-state Potts model. With V = —f
denoting the energy of a spin-configuration, we recognize in each species a
sample of Derrida’s random energy model [13, 14], and these samples are
asymmetrically coupled to each other for C' # 0. In this language, the dy-
namics of mutations described above is the random-site Metropolis algorithm
at zero temperature.

3 Estimating the length of walks

Evolution traces out a path in configuration space. At each time step, the
path is either extended one step from its current end point to a nearest neigh-
bor — when a mutation leading to higher fitness is offered to and accepted
by evolution — or the path is not extended — because a mutation leading
to lower fitness is offered and rejected. This path is often referred to as an
adaptive walk.

In this section, we are not concerned with the temporal aspects of evolu-
tion, but only with the length ¢ of adaptive walks. This limitation simplifies
the description a good deal. In subsequent sections, temporal aspects are
treated.

Before we get involved with mathematics, let us estimate the average
length of adaptive walks, and the average fitness they lead to. The qualitative
picture thus obtained is confirmed by rigorous calculations in appendix B.

We assume N is large. The dimension of configuration space is N. We
assume the length of adaptive walks is much smaller than v/N, and find this
assumption consistent with the results it leads to. Since the walk proceeds by
random mutations, it proceeds in random directions in configuration space.
There are many more directions than there are steps in the walk, by as-
sumption. So each step in the walk has a different direction. In each step
of the adaptive walk, the fitness F'is increased. The value it increases to, is



uncorrelated — to leading order in 1/N; see appendix A — with its previ-
ous value, except it is larger, of course. Consequently, in each step 1 — F'is
halved, on the average. Thus, starting the walk with F' = 0, after { steps the
average fitness is 1 —27¢. An adaptive walk stops when all neighbor positions
have lower fitness than the current position. Since fitnesses are random and
uncorrelated, this happens when N independent random numbers happen to
be smaller than F'. On the average, this occurs when 1 — F' ~ 1/N. This is
our estimate for the average final fitness, and, setting 1 — F' ~ 27*, we have
an estimate for the average length of an adaptive walk:

{ ~log N/log?2 (1)

In the derivation of this result, we neglected correlations between fluctua-
tions around the averages that we worked with. They do not change the
logarithmic dependence on N in Eq. (1), but do change the coefficient of
log N; see appendix B.

In addition to a more precise result for the average length of adaptive
walks, we want to know the probability distribution ), for ¢. In [8], “long
upper tails containing little probability” were seen in numerical results for
(Q)¢. So one may wonder whether (), decreases as a power of ( at large (, or
faster. We found that (Qr)i=01,2,... is a Poisson distribution to leading order
in 1/log N; see appendix C and figure 1.

4 Estimating the duration of walks

Since we let the adaptive walk start out with fitness ' = 0, the probability
(o that it is at a local fitness maximum at time ¢ = 0 after the first step is

Qo =1/N (2)

This is a rigorous result.

On the average, and to leading order in 1/N, each step taken, including
the first, reduces 1 — F' by a factor 2. Each step thereby doubles the prob-
ability that the ensuing step will be the last, while it halves the probability
per unit of time that the next step is taken. Consequently, the probability
per unit of time for the walk to terminate is constant during the walk. This
means

Q: = —expl—1/1) (3)

Using the exact result in Eq. (2), we have the estimates

t=N (4)
and |
Q0 = L esp(-1/) o)



This last equation shows that N@); remains a finite function of ¢/N in the
limit N — oo, and its k’th moment is proportional to N*. In particular we
see that the standard deviation

o(t)=N (6)

scales like the average . This is in contrast to the scaling laws found for the
average length of walks and its standard deviation; see appendices B and C.

In appendix D we show how this section’s estimates are modified when
we account properly for fluctuations and their correlations. The result for
NQ; is shown in figure 2.

5 Master Equation

Because each species evolves by mutation of randomly chosen genes in a
random fitness landscape, its path of evolution through configuration space
can be replaced by a random walk, to leading order in N; see appendix A.
This observation causes vast simplifications in the description of the system’s
dynamics, which, on the other hand, is exact then only to leading order in
N. But that is a small price to pay, as we imagine N is large anyway.

We include two additional simplifications in the description: instead of
keeping fixed the C' randomly chosen foreign genes that any species depends
on, we re-choose them at random any time we need them, i. e. we exchange
“quenched” randomness for “annealed”. If the total number of species in the
ecosystem is effectively infinite — and this assumption is the second sim-
plification we add to the description — then there is no difference between
results based on quenched, respectively annealed, randomness. This is be-
cause the set of species that any species depends on, directly or via other
species, forms a C-branched tree, each node of the tree representing a species,
each oriented branch a dependency. So while our exchange of quenched for
annealed randomness amounts to a mean-field approximation, we neverthe-
less expect the mean-field theory to be exact, because the system effectively
is infinite dimensional through its random connections.

The second assumption, an effectively infinite number of species in the
ecosystem, makes a description in terms of density functions possible: let
prm(F; 1) denote the relative number of species which have fitness F' and M
less fit one-mutant neighbors at time ¢. A change in a random gene will then
lead to higher fitness — and therefore be accepted — with probability

N

Aty = 3 (1= MyN) [ (P (1)

M=0

because 1 — M/N is the probability that the change of one random gene
leads to higher fitness in a species which has M less fit one-mutant neighbors.



We note that A(t) also is the rate at which mutations are accepted by the
ecology from the constant rate of mutations offered. So A(?) is a measure of
the evolutionary activity in the ecology. We shall find it a useful quantity
below, and refer to it as the activity.

The probability that such a mutation is accepted and results in fitness F'
for the changed species, is

B(Fit) = [ o), )
where N
qb(F’;t):1_F/MZ_:(1—M/N)/)M(F’;t) 9)

is the contribution to this probability from species with fitness F’. This
contribution does not depend on F' as long as F' > F’. This is so because we
have assumed the fitness landscape is uncorrelated. The factor 1/(1 — F’) in
this expression is the normalization factor for the constant distribution for
F with F > F'.

With this notation we can write down the master equation for pa(F';1):

G ol Fi1) = —(1= SHpus(Fe1) + Ban (F)0(F1)
_%A(t)pM(F; 1)+ %A(t)BM,N(F) (10)

This non-linear integro-differential equation expresses that the relative num-
ber of species with fitness F', and M less fit 1-mutant neighbors, changes for
four different reasons, corresponding to the four terms on the right-hand-side
of Eq. (10). The time-scale in Eq. (10) has been chosen such that in one unit
of time one mutation is offered per species — to be accepted or rejected.

The first term on the right-hand-side of Eq. (10) is the rate at which
species with fitness F', and M less fit neighbors, mutate to higher fitness.

The second term on the right-hand-side is a rate of change of less fit
species into species with fitness F' and number of less fit neighbors M. The
function By n(F') is the binomial distribution with mean F":

N!

Pt = Sy

FM(1 — pyN-M (11)
It represents the probability that M out of N one-mutant neighbors to a
genome with fitness F' are less fit than /. This probability is binomially
distributed because the fitness landscape is random, with fitness F' equidis-
tributed in the interval [0, 1] [20].

The third term is a rate of loss of species with fitness £, M. This loss
is not caused by a change in the genes of the species lost, but by a change
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in its fitness due to genetic changes in other species. Since the C' genes in
other species that any species depends on, are randomly chosen, this change
is the product of the probability A(¢) that a mutation in a random species
is accepted and the probability C'/Npy(F';t) that the gene it occurs in is a
gene on which a species with fitness I, M depends.

The fourth term on the right-hand-side of Eq. (10) is, like the second term,
a rate of change of species into species with fitness F, M. It complements
the third term: species that change fitness due to genetic changes in other
species, can change their fitness to F' with equidistributed F'. When they
have done that, they have M less fit neighbors with probability Bas n(F).

We note that Eq. (10) conserves the total probability, as it should:

o Y
a/0 dF'S p(Fit) = 0. (12)
M=0

6 Estimating the Phase Structure

Clearly, a static solution to Eq. (10) is provided by
pu(F5t) = o np(F), (13)

for any distribution p(F'). This solution corresponds to all species being at
local fitness maxima. In the language of [1, 2, 3], borrowed from economics,
the system is at a Nash equilibrium. Whether this fixed point for the dynam-
ics is attractive or repulsive with respect to perturbations of pas(F'), depends
on the value of C'. For €' = 0 it is attractive, since in this case each species
evolves in a fixed landscape, and consequently arrives at a local maximum.
At the other extreme, C'/N > 1,

pm(Fit) = Bun(F) (14)

is a static solution to leading order in N/C'. It corresponds to totally random
fitness F', and maximum activity A = 1/2.

At intermediate values of €', we can easily imagine the existence of a
static solution with a finite activity A corresponding to a certain fraction
of all species being in states that evolve. The activity is maintained by a
balance between the rate at which species evolve towards fitness maxima,
and the rate at which species are set back in evolution by their dependence
on other species. We expect the activity A to increase with C.

On the other hand, we can also imagine that ' can be too small to sustain
a finite activity. In appendix B we show that isolated species on the average
change

1 = log N 4 0.09913... + O(N~1) (15)



genes in their evolution to a local maximum. So do species in the NK(C-model
studied here, if they are not set back in evolution by their dependence on
other species. Thus gy i1s the minimal number of genetic changes per species
by which the NKC-model can evolve to the fixed point Eq. (13). If, in doing
s0, each species on the average sets back less (or more) than one other species
in evolution, the fixed point Eq. (13) will (or will not) be attractive.

We can make the argument more precise by making it perturbative: sup-
pose for a given value of (' the system has been arranged to be at the fixed
point solution Eq. (13), and we change the fitness of one species to a random
value. Since the other species do not evolve, the one singled out evolves as
an isolated species, and arrives at a fitness maximum after having changed
typically pq of its genes. But the fitness of other species depend on the state
of genes in the species that evolved; typically C' other species will each de-
pend on one gene. If any of these C' genes were among the py genes that
changed, the species depending on them were set back in evolution, and are
now evolving, possibly setting back yet other species in their evolution. The
question then is, if the chain reaction set off this way is sub- or super-critical.
Will it die out or run away? The value for ' which separates these two sit-
uations we call critical, and write it C.y. It is the value for which, on the
average, one out of €' randomly chosen genes is among the yy changed genes.
Thus 1 = Cuigptr /N, or

Coste = N/ (16)

We conclude that the species collectively evolve each to their own local fitness
maximum and remain there with vanishing activity A for ' < Cuy, while
they evolve to a state with finite activity A < 1/2 for € > Cuy. The
asymptotic value of the activity A for £ — oo can consequently be used as
an order parameter distinguishing the two phases.

The arguments used in this section were based on average values. While
we would not expect fluctuations to change the qualitative picture, they
might change the coefficient in a scaling law like Eq. (16). Actually they do
not. The perturbative result is exact, as we see in appendix E, where we also
find the activity as a function of ¢ = C/N. This activity is shown in figure 3
for N =10 and N = 100. In appendix F, the systems relaxation time to the
steady state is calculated for both phases, and found to diverge with mean
field exponent -1 at C..s.

7 Summary. Discussion. Perspectives.

For species evolving in isolation, we have obtained rigorous results to leading
order in 1/N for the length and duration of adaptive walks in a special case
of Kauffman’s N K-model. We found the average length scales as log N, and
so does the variance of the distribution of lengths. We have also obtained



analytical expressions for the prefactors in these scaling laws, and found that
to leading order in 1/logN, lengths are Poisson distributed.

For the duration of adaptive walk, we found qualitatively different re-
sults. While the average duration is proportional to N with a constant of
proportionality we have found analytically, the variance of the duration is
proportional to N?, again with analytically known coefficient. So while typ-
ical lengths of adaptive walks are relatively close to their average, typical
durations vary over a range with magnitude equal to their average. We ex-
tended this result by showing analytically that in the limit N — oo, t/N
has a finite distribution. Numerically, we found this distribution falls off
exponentially for ¢t/N > 1.

For co-evolving species, we have shown analytically that a variant of
Kauffman’s NKC-model has two phases; a frozen phase in which all species
eventually stop evolving, because they all reach local fitness maxima, and
a chaotic phase characterized by a balance between the number of species
at local fitness maxima, and the number evolving towards such maxima,
and changing the fitness landscape of other species in the process. As order
parameter we used the asymptotic activity, the fraction of species chang-
ing genetically per unit of time. We gave a closed expression determining
the asymptotic activity as an implicit function of the connectivity between
species. We also gave expressions for the system’s relaxation time to the
asymptotic activity. On the line separating the two phases in the system’s
parameter space, the relaxation time diverges with mean field exponent -1.

We obtained these results in a mean field description of the model, keep-
ing only leading terms in an expansion in 1/N, N being the number of genes
per species. Since N typically is very large, however, our leading-order ap-
proximation in N is very good. We do not expect any qualitative differences
between our leading order 1/N-expansion results and exact results as con-
cerns the existence of the two phases, the location of the phase boundary,
and the relaxation time. As for the exponent -1 for the divergence of the
relaxation time, we have argued that it is an exact result. These results all
depend on the number of species S being effectively infinite, and certainly
much larger than both the number of genes N and the connectivity C.

It may well be possible to obtain other analytical results for the NKC-
model, using the methods of the present paper. For example one may try to
find the Lyapunov exponents of the chaotic phase.

As for the purpose of our investigation — the demonstration of self-orga-
nized criticality in the NKC-model — we see no way that the maximally
rugged variant studied here can be driven with perturbations from its frozen
phase into a “poised”, critical state, as was done in [15] with Conway’s Game
of Life. The maximally rugged variant cannot be “pumped up” to a “poised”
state — at least not in the mean field description — because after the model
has responded to a perturbation it is back in the same state as it was before
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the perturbation was applied. This is not necessarily a short-coming of the
mean field description. It willingly describes for example the build-up of the
self-organized critical state of conservative sand pile models [16]. Rather, it is
due to the maximal ruggedness of the fitness landscape. Its total absence of
correlations makes any perturbation of a species wipe out all memory of the
fitness the species had acquired before the perturbation was applied. There
is, so to speak, no such thing as a perturbation of fitness in the maximally
rugged case. Genetic configurations may be perturbed by having just one or
a few genes changed. But that typically results in a finite change of fitness
in a maximally rugged landscape.

On the other hand, maximal ruggedness of the model’s fitness landscape
is crucial for our ability to derive analytical results, and these results are
important in view of the difficulty of a numerical simulation of the model.
So we are reluctant to abandon it. That leaves us with another, biologically
appealing possibility: we can make the model more realistic (and computa-
tionally even more difficult) by treating N and C' as dynamical parameters
of the individual species, add criteria for their evolutionary change, and ask
if evolution drives their averages onto the critical line found in the present
paper. That study has yet to be done. Methods and results that appear to
make such an undertaking feasible, were presented here.
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Appendix A: Adaptive and random walks

In this appendix we argue that if the dimension N of configuration space is
sufficiently large compared to the length of a finite path in that space, we
cannot distinguish, to leading order in N, between the path of a random
walk and the path of an adaptive walk in a random fitness landscape:
Assume that the dimension N of configuration space is much larger than
the length of adaptive walks in that space. Then we can neglect the fact that
the adaptive walk avoids itself and all configurations previously probed by
it. The reasoning goes as follows: Since mutations occur on random genes,
a step is added to the walk by probing random directions in configuration
space, until one leading to higher fitness is found. Then the walk is extended
one step in that direction, and the procedure repeated from the new position
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in configuration space. By this algorithm, correlations between successive
directions chosen by the walk are of order 1/N. So to leading order in
an expansion in 1/N successive directions are uncorrelated, and we have a
random walk at hand. Successive directions are also different to leading
order. Consequently, if the length of the walk is much smaller than /N, all
directions chosen by it are different, and it obviously does not self-intersect
[17].

By assuming that the adaptive walk never probes a site in configuration
space that it has probed before, we found, in section 3, that walks have length
~ log N, which is much smaller than v/N for N large. We conclude that our
assumption that the walk is short compared to NV is self-consistent correct.

We may ask whether we can find all sub-leading terms in an expansion
in 1/N without knowing the entire history of an adaptive walk. The answer
is negative:

An adaptive walk does not back-track, while a random walk does with
probability ~ 1/N per step. We can handle a random walk without back-
tracking analytically. But back-tracking is not the only 1/N-effect distin-
guishing an adaptive walk from a random one, however. An adaptive walk
also forms no closed loops, and does not visit sites in configuration space that
were probed previously, but not visited for lack of fitness. Thus an adaptive
walk is not only self-avoiding, but also avoids many one-mutant neighbors to
itself. A short random walk visits such sites with probability ~ 1/N. This
is seen as follows:

Self-intersection by a random walk requires the formation of a closed loop
by the walk, i.e. at least two steps, of opposite orientation, must be taken
in each dimension in which the loop extends. So the probability for the
formation of a closed loop of length ¢ on a random walk of length ¢ is, to
leading order, suppressed by a factor (¢ — (')/N*/?, where (' > 4. Nearest
neighbors to the walk can be visited in one step less, i.e. with probability
(¢ — (")/N*/?=1 For {/ = 4 this probability is ~ (/N. So to leading order
in 1/N we can treat the adaptive walk as a random walk. We can also
treat it as a random walk without back-tracking, thereby describing some of
the 1/N-effects at play. But a full description of 1/N effects requires more
information than the walk’s current position in configuration space.

In summary, to leading order in 1/N we may add a step to the adaptive
walk by treating the one-mutant neighbors to the current configurations as if
they had never been visited or probed before. Consequently, the probability
that M of these N neighbors are less fit than the current configuration, is
binomial, By n(F'), where F'is the fitness of the current configuration. If we
take into account that the previous configuration is known to be less fit, the
probability is Bay—1 n-1(F'), as given in Eq. (57).

When we forbid back-tracking, our treatment is exact for a configuration
space which is a Cayley tree with coordination number N. It should not be
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confused with an ‘annealed’ fitness landscape, as an approximation to the
‘quenched’ landscape we start out with. Not if ‘annealed’” means re-choosing
the fitness of a configuration every time it is probed by the adaptive walk. If
we did that, we would have no maxima, since a higher fitness could always
be attained by sufficiently many trials. The picture of an ‘annealed’ fitness
landscape applies only in the sense that the fitnesses of all N (or N — 1)
neighbors to a configuration are re-chosen every time that configuration is
visited, and kept fired during the wisit, thereby possibly making the visit
permanent.

Appendix B: The length of walks

When duration is not of interest, but length is, the simplest quantity to work
with is the probability density p,(F') that an adaptive walk contains (at least)
( steps, and has fitness I after these ( steps. Evolution by random mutations
through fitter one-mutant neighbors can be described approximately by a
recursion relation:
F 1 — F/N—l
e (F) = / AP~ p (") for (=1,2,... (17)
0 1—F

This recursion relation expresses that fitness F' is acquired in £ 4+ 1 evolu-
tionary steps by acquiring any lower fitness [ in ( steps, and taking one
more step to fitness F'. Taking the last step requires that not all N one-
mutant neighbors in configuration space are less fit. One is — the one that
was reached after { — 1 steps. The remaining N — 1 neighbors have fitness
less than F"’, each with probability [, since their fitness is random. Here
we assume that they were not probed previously by the path of evolution.
This assumption is only approximately true, so Eq. (17) is an approximation.
Within this approximation, the probability that not all neighbors are less fit
is 1 — F'V=1. When this is the case, the (£ 4 1)th evolutionary step will be
taken, and leads to any fitness above F’ with equal probability; hence to
fitness F'in the interval dF’ with probability dF’/(1 — F").

The approximation we have made with Eq. (17) relies on N being large.
While the power N — 1 on F” excludes evolutionary back-tracking, Eq. (17)
does not exclude that the path of evolution intersects itself or visits other
points in configuration space that it probed and rejected at an earlier time.
Such intersections are forbidden by the dynamics, which forces the path to
always higher degrees of fitness in a fixed landscape, or to stop at a local
maximum. But in Eq. (17), the N — 1 one-mutant neighbors which are not
a state’s immediate predecessor in evolution, are all treated as if they were
never probed before by the evolutionary process. Which some of them may
have been, in which case we know that their fitness is lower than the current
one. So Eq. (17) yields an upper bound for the true value of p,(F'), because
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the exact relation has a power lower than or equal to N — 1, where Eq. (17)
has N — 1. This exact power depends on the entire path of evolution up to
the currents state, so the approximation made with Eq. (17) causes a vast
simplification of the problem. In the appendix we give arguments that this
approximation is correct to leading order in an expansion in 1/N.

In view of the further approximation considered below, all we really need
are results to leading order in N. But since we can solve Eq. (17) as it
stands — i.e. with back-tracking forbidden, and self-intersection permitted
— we shall do that for definiteness.

Introducing the monotonic function

1
Hy(P)= Y +F (15)
a change of variable to H = Hy_1(F) in Eq. (17) gives

H
pg_|_1(H):/0 dH' po(H') for (=1,2,..., (19)

which is easily iterated to give

H

pe(H) = #/ dH' (H — H")"'py(H'). (20)

(t—1)Jo

For definiteness and notational convenience, we let all adaptive walks begin
in the least fit state, characterized by F' = 0. Since there is zero probability
for this state being a local maximum of fitness, the first step of the adaptive
walk is always taken. For notational convenience, we let £ denote the number
of steps taken in excess of this first step. Then the initial condition reads

P (F) = &(F) (21)

This rather eccentric choice of initial condition assures that the walk has a
predecessor for all values of ¢ > 0. This makes formulas look simpler, and
makes Eq. (17) and Eq. (19) valid also for ¢ = —1. They have the unique
solution

1
pe(F) = —Hy_(F) for (=0,1,2,... (22)

Obviously, for fixed F' < 1
Hy(F) — —log(l — F) for N — oo, (23)

while for F' = 1, Hy(1) are the harmonic numbers discussed by Knuth in
[18]

Hy(1) =3

k=1

= (N +1) 75 =logN + 75+ O(N7),  (24)

ol el
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where ¢(2) = dlog I'(x)/dx, and v = 0.57721566... is Euler’s constant. For

general I we note that
Hy(F) = L(F+) —log(—log(F)) + O(N ™) (25)
where i is the logarithmic integral. We shall need that
Hy(1 —2/N) =log N + 5 — Ein(z) + O(N™') for x ~O(1),  (26)
where Fin(z) is an entire function related to the exponential integral [19]:

1_ —1
c —®
1

FEin(z) = / dt 1(z) +logax+ g (27)
0
As stated above, Eq. (17) is the simplest relation we can write down for
a probability describing the length of the adaptive walks considered here, in
the approximation specified. The probability that a walk contains (at least)
{ steps is obtained from p,(F') by integration over F":

1 1 1
po= | dEpdF) = /0 dF Hy_y(F)'
1 N-1 1
= 7 for {1 =0,1,2,... (28
ﬁ!kh.;]iz:lkl...kg(k1_|_..._|_k£_|_1) (28)

Integration over F' on both sides in Eq. (17) gives
1
Py =P — / dF N p(F) (29)
0

which obviously cannot be made into a closed equation for F;. The remaining
integral in Eq. (29) is the probability that an adaptive walk contains exactly
( steps. This is a quantity of interest. We introduce the notation @), for it,
and ¢,(F') for the corresponding probability density that a walk stops with
fitness F' after exactly ¢ steps:

- 1
@(F) = FN=p(F)= FN 1EHN_1(F)f for (=0,1,2,... (30)
1 L )
Qi = | dFq(F) = E/o AP FN-VH (P
N 1

o for (=0,1,2,...(31
g’ klv'%:l klkf(k1++kg+N) or ( )

From Eq. (29) follows
Qﬁng_Pg_H (32)

Since Fq. (21) implies
@Qa=0, h=1 (33)
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normalization of ¢/(F') and @, follows trivially from Eq. (32):

i/@l dF q)(F) = i@z = i(Pe —P) =Py =1 (34)

Here we have used limy_., P, = 0, and we have set the upper limit on the
sum over { to infinity for convenience. Strictly speaking, this upper limit is
AN the number of points in configuration space. We shall see below that
typical values for ¢ are of order log N, and much larger values of { occur with
probabilities that are more than exponentially suppressed. So the effect of
this change in upper limit is truly negligible.

Inserting Eq. (30) in Eq. (34) and summing over /, we see that normal-
ization means

/0 LR N exp (Hy 1 (F)) = 1 (35)

for any positive integer N. This identity is exact, and may also be proven
directly; we leave that for the reader’s entertainment.
The generating function for the probabilities ), reads

O\ =3 NQ, = /01 dF PNV exp (AHy—y(F)). (36)

=0

Despite our ability to evaluate the integral in Eq. (35) we have not been able
to evaluate the integral in Eq. (36) for general A. But as we have already
neglected terms of sub-leading order in 1/N, we may continue to do so with
no further loss of generality. To this end we write F' =1 — 2 /N, and observe
that 'V = exp(—z) + O(2%/N). Consequently, the integrand in Eq. (36) is
negligible unless = ~ 1, and, to leading order in 1/N, we have for Q(\), Qy,
and its first moment p:

Q()\) _ N/\_l/ooodxe—x—/\(Ein(x)—WE) (37)
o) = 1 .
_ L Oodx e " (log N + —Ein(l‘))[
% = 3l os Ve

= L ((log VY + O((log N)*)) (39)

N
= dQ (finite) -1
= 36Q = 220 Sl N 4 W F O, ()
=0
Here . - .
jolfinite) / d (v — Ein(x)) e+ -En) — (.09913... (41)
0

is a constant that we have not been able to express in terms of known con-
stants. Our results for py, and for py given in Eq. (34), agree with the
two-digit numerical results given in [8].
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Eq. (39) shows that to leading order in log N, @, is a Poisson distribu-
tion. This simple results has a simple explanation: the Poisson distribution
is obtained because all adaptive walks terminate with essentially the same
fitness F'. F' belongs to an interval of width ~ 1/N at F' = 1. This is seen
from our rewriting [ dFFN=1 as 1/N [, dzexp(—z). Thus, in the interval
[0,1], NFN-1is almost a é-function with support at /' ~ 1. If we replace it
with that in the formulas above, we arrive at a Poisson distribution.

Appendix C: ),’s Poisson behaviour

In this appendix we elaborate on (),’s similarity with a Poisson distribution,
and compare it with such distributions for various values of V.
With the notation

:/Olqu(F)..., (42)

where

= Y alF) = FYt el (13)

is the probability density that an adaptive walk terminates at a local fitness
maximum with fitness F', we have a positive measure on the fitness interval
[0,1]. Eq. (35) shows that this measure is normalized. We write the integral
in Eq. (36) in terms of this measure and cumulant-expand it:

Q) = (D
= exp ((e(A_l)HN—l — 1>C)

= exp (A= D 500 = D)o 0= D). (1)

where the first cumulants are

(Hyo1). = (Hyo)=mo=log N 4p™ + O(NT)  (45)
(H: ) = ((Hyoyi—m)?) =0.16733... + O(N7) (46)
(Hyo) = ((Hno—m)’) = —0.08370... + O(N) (47)
<Hf4v 1> = <(HN 1 —M1)4> < Hy— —M1)2>2

= 0.03815... + O(N7Y) (48)

Here we have used that to leading order in 1/N these expectation values
receive contributions only from values of F obeying F' = 1—2/N with @ ~ 1,

i.e. where Hy_1(F)— 1 = vg —FEin(a) — ,ugﬁnite). Consequently, all cumulants
beyond the first are ~ 1, while the first, y, i1s ~ log N. Neglecting cumulants
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higher than the first in Eq. (44), we arrive at the generating function for a
Poisson distribution with the same mean, pq, as ¢y has:

Q) = exp((A = 1)) (49)

Figure 1 shows ), against ¢ for N = 10, 100, 1000, and 10,000 as open
symbols connected by lines. The lines are only meant to guide the eye. @),
was found by numerical integration of the expressions for (), deriving from
Eq. (36). The values for the Poisson distributions with the same mean values
are shown as filled circles, which in most cases fall within the open symbols.
This agreement is rather striking. It is not just due to the central limit
theorem making both (), and the Poisson distribution well approximated
by the same Gaussian distribution, hence by each other. This is illustrated
in figure 1 for the case of N = 10: the dashed line shows the Gaussian
distribution with the same mean and variance as )y has. Clearly, it does not
approximate )y, shown as open circles, as well as the Poisson distribution
with the same mean as (),, shown as filled circles. In addition to that it has
non-negligible support for negative values of (.

We can also compare ();’s moments, p,,, with the moments of the Poisson
distribution with the same mean, p:

o= (Hyoa) =log N + p™™ (50)
fr = w4 (Hy_y)e = p1 +0.16733... (51)
pz = i+ (HY Ve + (Hy_))e = 1 + 0.08363... (52)
Pa = i1+ <H]2\7—1>C + 3(,“1 + <H]2\7—1>C)2 + <HJ3V—1>C + <Hj4v-1>c

= g1 +0.16733... 4+ 3(puy + 0.16733...)% + 0.12215... (53)

As expected from Eq. (44), we see that when we neglect cumulants beyond
the first, the n’th moment, p,, depends on the first moment, py, as the
n’th moment of a Poisson distribution does. We also see that this neglect
introduces an error of just a few percent in the moments shown for N > 100.
We expect this error to increase with the order n of the moment p,, and
know that it decreases as 1/log N.

Appendix D: The duration of walks

Let poar:(F) denote the probability that an adaptive walk at time ¢ has
proceeded ( steps, thereby reaching a point in configuration space having
fitness F and M less fit neighbors. The time-evolution of pyar4(F') is found
as follows. As above, we neglect the fact that an adaptive walk cannot
intersect itself or any site that was previously probed by its evolution and
discarded for being less fit. As explained in the appendix, this is a leading
order approximation in an expansion in 1/N. Within this approximation,
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but explicitly forbidding back-tracking, peas.:(F')’s development in time is
given by

M

et (F) = wpensa(F) + By v-1(F) @1 ) (54)
where h
ualF) = [ dF 60l 1) (55)
and N
oulF) = =5 3 (1= ) peane( ) (36)

Eq. (54) expresses that an adaptive walk has length ¢, fitness F', and number
of less fit neighbors M at time ¢+ 1 for one of two mutually exclusive reasons:
it was either characterized by these values at time ¢, and took no step between
time ¢ and time ¢ + 1 — this happens with the probability given as the first
term on the right-hand-side in Eq. (54) — or a step was taken between time
t and time t 4+ 1, and the adaptive walk arrived at values (¢, F, M) with that
step — this happens with the probability given as the second term on the
right-hand-side of Eq. (54). ®y_1,:(F") is the transition probability density at
time ¢ to fitness F' from less fit one-mutant neighbor configurations arrived
at in € — 1 steps. It is an integral over F’ < F of ¢s_1.:(F"), the transition
probability density at time ¢ from fitness [ arrived at in £ — 1 steps to any
more fit one-mutant neighbor configuration.

A configuration with fitness F', arrived at from a less fit configuration,
will have a total of M less fit neighbor configurations, when M — 1 of the
N —1 new neighbor configurations are less fit. This happens with binomially
distributed probability,

By_in_i(F) = ( A]Z_ 11 ) FM=H — pyN M (57)
when we treat the landscape’s quenched randomness as if the one-mutant
neighborhood of any configuration arrived at is “annealed”, thereby allowing
the adaptive walk to self-intersect, with the exception that back-tracking
remains forbidden.

As initial condition for Eq. (54) we choose as before, with no essential loss
of generality, to let the adaptive walk start out in the least fit configuration,
at a time that is chosen to be —1 for notational convenience. We let ¢ denote
the number of steps taken in excess to the first step, which is always taken.

Then the initial condition reads

pﬁ,M;_l(F) = 5[7_1 5M70 5(F> (58)
Inserted in Eq. (54), this initial condition gives the equivalent initial condition
pesro(F) = By nv-1(F) 000 (59)
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Again our rather eccentric choice of initial condition assures that the walk
has a predecessor at ¢ = 0, as at all later times. This makes formulas look
simpler.

The simpler Eq. (17) is contained in Eq. (54): the probability that an
adaptive walk reaches length ¢ and fitness F' at time ¢ is ®,_1;_1(F). Conse-
quently, the probability that it reaches length ¢ and fitness F' at all, denoted
pe(F) in appendix B, is

F)= f:q)ﬁ—l;t—l(F) for £>0. (60)

Using this with Eq. (54), one obtains an equation for p,(F), Eq. (17).

Eq. (54) is a linear integro-difference equation. The fact that it is non-
local in F' does not prevent its solution, since it can be made local by appro-
priate differentiation after F'. Introducing the generating function

PN Fim) =3 A prana(F) (61)
£=0 t=0
and the corresponding generating functions for transition probability densi-
ties
N
SN Fi7 > (1= M/N)pu(X F;7) (62)
F M=0
and .
SO\ Fir) = [ dF' (N Fiir), (63)
0

the initial condition, Eq. (59), reads
pp (A, F150) = By v-1(F) (64)

and Eq. (54) itself, after a minor rearrangement, reads

N

(A B3 7) = o——r

By noa(F) (L4 Ar®(N, Fir)). (65)
Consequently,
O(A F57) = hya(F57)(1 4 Ar®(A, F; 7)), (66)

where we have introduced

hn_a(Fi7) = 1—FZN—TMBM_1’N_1(F)
M=0
N-1
N-1
= > B, n—2(F)
o N—1M
N—-1 1
= —— LFi(2—N,1;2—N/7; F).
N—Tl—F2 1( ) 9 /7—7 ) (67)



Here 5 £} is Gauss’ hypergeometric function. For later use, we note that

Thy_1(l—x/N;7) = (N =1)a "N ey (14 N(77 = 1);2) + O(N7Y),
(68)

where 7 is the incomplete gamma-function. We shall also need the function
F
Hy(Fir) = [ dF (1 7) (69)
0
and make contact with appendix B by noting that
Hy(F;1) = Hy(F). (70)
For later use, we note that
FHy (1= )N (142/N) ™) = log N—(142) s~ T(z; 2 +O(N), (T1)

when & ~ 1 and z ~ 1, and we have introduced:

1 1 —eoi-v)

I(x;2) = / dyy ——— — g (72)
0 1 —y

Z(x;0) = FEin(x) —vg. (73)

Eq. (66) is solved by

SN F'i7) = hy_1 (£ 7) exp(ATHy 1 (F, 7)), (74)
and consequently

N NBy_ i vy (F
(A7) = ]]{[4_1]:]\}( )exp()\THN_l(F,T)). (75)

In this result A only occurs multiplied by 7. This is because in the series
expansion of this result each power of A represents one step taken in configu-
ration space by the adaptive walk, and each such step takes one unit of time,
represented by one power of 7. Powers of 7 not occurring in conjunction with
A, on the other hand, represent time-steps during which the adaptive walk
did not progress.

The relation between length and duration of adaptive walks is contained
in

1 N
pe = [ AP S prara(F) (76)
0 M=0

and therefore in

plA;T) = /01 dF Z (A7) = % (ﬁ — 1) + (’)(N_l) (77)

M=0
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The generating function at time ¢ > 0,
= Z )\ﬁ Pt s (78)
£=0

is obtained from p(A; 7) via the relation

N 1 dr 3 1
p(}) = %j{ i+l p(A 271'@)\ j{ Ti+2 ( L —7)A B 1) +OWNT)
_ SIH(ZA)B(l —MAF LD+ ONTY, (79)
7

where the closed path of integration in the complex 7-plane encircles 7 = 0
once in the positive direction. Using Cauchy’s theorem, the last identity was
established by moving the path to lie along the integrand’s branch cut on the
real axis, 7 > 1. The function B(z,y) is the beta-function, Euler’s integral
of the first kind. Notice that the normalization condition

(1) = pr =1 V120 (80)
=0

is satisfied by the result in Eq. (79). The same result gives, to leading order
in 1/N, that

() = Zﬁpu: dil):¢(t+2)+7,;—1

= logt +yg— 1+ (’)(t_l) (81)
and
- - i+1
i) = (P)— (O =0+ +w+3 5
k=1
= logt+ g+ 71'2/6 + (’)(t_l) (82)

Thus we see our estimate confirmed: the average length of an adaptive walk
grows logarithmically with time. Furthermore, we see that the variance of
the length grows like the average length, like for a biased random walk.
This similarity is no coincidence, since the adaptive walk in many respects
resembles a simple, biased random walk.

In the last identity in Eq. (77) it was tacitly assumed that N itself was
the only quantity of order N. Consequently, the time-dependence found
from this identity is reliable only when ¢ is far from being of order N. This
restriction needs not prevent ¢ from being large and the asymptotic forms in
Eq. (81) and Eq. (82) from being valid.

When ¢t ~ N, walks reach local maxima and terminate, according to our
estimate for their duration. This, of course, is an average result. For example
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there is a probability ~ 1/N that an adaptive walk terminates already after
its first step. Now let us substantiate the estimate: the probability that a
walk terminates with length ¢ and fitness F' at time ¢ is

Gt (F) = pena(F) = pev-1(F). (83)

Contact is made with appendix B by observing

@(F) =3 qua( 1) = Jim pe (). (84)
t=0
We introduce )
Que= [ 4P gua(F) (85)
and . .
QA7) =D X Y 7' Quy (86)
=0 t=0
and have

1 1
Q7)) = (1— T)/O dFpn (X, F;7) :/0 dFFY " exp(Ar Hy -1 (F5 7))
_ MR F() ) + O(NTY), (87)

where Eq. (75) was used in the second identity, and F = 1 — «/N, 7 =
(14 2/N)™, 2,z ~ 1, in the third. We have introduced the N-independent

function

F(rz) = /OO do e~ M (@32) (88)
0

Eq. (87) is the time-dependent extension of Eq. (36). From the generating
function in Eq. (87) we derive the average time it takes for an adaptive walk
to reach a local maximum:

o0

i = ZtQM:aa—?(l;l)

£,6=0

= 1.22398... N +O(1)
2-# = N? (zg(g) - %(1;0) - (aa—f) (1;0)) +O(N)  (90)
= 1.71788... N* + O(N) (91)
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where ( is Riemann’s zeta-function. We have not been able to relate the
derivatives of F in these equations to known mathematical constants.

Comparing this appendix’s results with those of appendix B, we notice
a big difference between the length and the duration of adaptive walks in a
random fitness landscape: while typical lengths are relatively closer to the
average length, the larger the system size N is, typical durations can differ
from the average by an amount the size of this average. This picture is
confirmed by the following expression for (J;, the probability that a walk has
duration ¢:

1 dr -
Qe = %j{EQ(l;T)
1 ,
= 27”,Nj{dzeﬁz_lp(l"'z)_wf(l;z). (92)

Here the closed path of integration in the complex 7-plane encircles 7 = 0

once in the positive direction, while a similar path of integration in the
complex z-plane, obtained by the substitution z = N(r~! — 1), has been
moved to lie along the negative real axis. That is the only place in the
z-plane, where F(1;z) is not analytic. We have not found a more closed
analytical expression for @); in the large-N limit than Eq. (92). Eq. (92)
suffices, however, since it shows that for t/N ~ 1 we have Q; ~ N~!. Hence,
in the limit N — oo, N, is a finite function of the variable ¢{/N. We have
found this function numerically. Its graph is shown in figure 3 as the fully
drawn line. The dashed line shows the graph for the estimate in Eq. (3)
with the exact value in Eq. (89) used for ¢. From the figure it seems that for
t/N > 1, Q) is essentially an exponential function, or at least exponentially
bounded, though other possibilities cannot be eliminated on the basis of the
figure.

Appendix E: Calculating the Phase Structure

Let us denote a stationary, or fixed point, solution to Eq. (10) by pi,(F).
With the notation A* = A[p*], ¢* = ¢[p*], ®* = ®[p*], and ¢ = C/N, the
time-independent version of Eq. (10) can be rewritten

B N
 N-—M+CA
Since A* and ®* both depend on p*, Eq. (93) is a non-linear integral equation

for pi;(F). We can solve it, nevertheless, by temporarily treating A* as a
constant, to be determined by self-consistency in the end. This is done in the

following way: By multiplying both sides in Eq. (93) with (1—-M/N)/(1—F),

and summing over M, one finds

O"(F) = g(F; cA™)(cA™ + O°(F)), (94)

P (F) Bun(F)(cA™ + @7(F)) (93)
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where we have introduced the function [21]

N-1 N-1
gsa) =1 _1F MZ::O N ivz\} foBM’N(F) - NM:()%‘ (95)
For later use we also introduce
Gl x) = /OF dF" g(F"; @) (96)
and .
G(z) = /0 AP S, (97)
Since g and G have simple poles at + = —1, —=14+1/N, —=14+2/N, ..., —1/N,

the function G has essential singularities at these points. The graph for G(x)
is shown in figure 4 for the case of N = 10. For @ > O(1/N) or x < —1, G
simplifies to

G(z) = (1+z)log(l +27") (98)

to leading order in 1/N. The graph for this approximation is shown as the
dotted curve in figure 4. The approximation has a cut in the interval [—1, 0]
where G(x) has N essential singularities.

Now, remembering ¢*(F') = %CI)*(F), we see Eq. (94) is solved by

O (F) = cA* (A 1), (99)

Inserting this solution in the definition Eq. (7) of the activity, we finally
arrive at a self-consistency equation for A*, given ¢:

A" =cA" (=14 G(cA")) (100)
This equation is solved by A* = 0 and by A* satisfying
cl=—1+4 G(cA"). (101)

The last equation gives A* as an implicit function of ¢. It has a real, positive
solution A* only for

¢> ot = (-1 4 G(0)7" = g (102)

where g7 is given in Eq. (15). For ¢A* > O(1/N), Eq. (101) simplifies to
leading order in 1/N to another implicit expression for A*(¢),

=1+ (1+cA%)log(l + (eA™)™). (103)

According to Eq. (101), A* & ¢ — ¢ait for ¢ ~ cqit, i e. the critical
exponent for the order parameter A* is 1. At the other extreme, for ¢ — oo,
Eq. (101) gives A* = 1/2, as we expect from section 6. Figure 3 shows A*(¢)
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for N =10 and N = 100 as fully drawn curves. The approximate expression
in Eq. (103) is shown as the dotted curve.
For ¢ > ¢ait, Eq. (93) then gives

CA*
(F) = B F FcA” 104
PulF) = s Bun(F) e GUF e, (101
while for ¢ < ¢qi; we have
Par(F) = S Y exp(G(F;0)). (105)

So, as already seen in section 6, the long-term dynamics of the co-evolving
species can be of two qualitatively different kinds, depending on whether the
parameters C' and N have values making ¢ = C'/N smaller or larger than ¢
given above. In the first case, the activity A(¢) dies out because all species
stop evolving as they reach local fitness maxima. This is frozen dynamics,
characterizing the frozen phase. In the second case the activity converges to
a non-zero value A*, signalling chaotic dynamics, characterizing the chaotic
phase. In this phase species also evolve towards local maxima in fitness, but
in the process of doing so, they change the fitness of other species, typically
setting them back in evolution. After a transient time, a balance is reached
where a certain fraction of species evolve, while another fraction remains at
local fitness maxima, with individual species passing from one fraction to the
other every so often.

The line C'/N = c¢ui dividing the (C, N)-plane into two phases is critical
in the sense that the relaxation time to asymptotic behaviour diverges on
this line, as shown in appendix F.

Appendix F: Relaxation Times

In order to find the relaxation time to asymptotic values, we linearize Eq. (10)
at its fixed point solution. We write

pu(E58) = piy (1) + Apu(£731), (106)

A(t) = A"+ AA(L), (107)
O(F;1) = O(F)+Ad(F;1), (108)
S(I3t) = ¢"(F)+ Ag(F1), (109)

and insert these expressions in Eq. (10). By using Eq. (93) and keeping only
terms linear in A...., we arrive at the linearized master equation

b Mo .
SAnu(Fit) = —(1= 5+ eA) Apu(Fi1) (110)

+e(Bun(F) — py(F)AA() + Bun(F)AP(F;t).
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This equation is more easily solved by writing Apas(F';t) as a Laplace
transform:

Apa(F3t) = /OOO X e~ Apar(F; 0. (111)

AA(t) and A®(F;t) are linear functionals of Appr(F';t) and therefore com-
mute with Laplace transformation. So with a self-explanatory notation, the
inverse Laplace transform of Eq. (110) reads, slightly rewritten:

AAN) By (F) = p3,(F)) + Bun(F)AP(F; )
1 — M/N + cA*— A

App(FN) = (112)
By multiplying both sides of this equation with (I — M/N)/(1 — F), and
summing over M, one finds

AG(F; ) = (113)
AAN)(g(F; eA™ = X) = g1(F; cA” = X)) + g(F; cA" = M)AD(F; )),

where the function g(F'; x) was introduced in the previous appendix, and the
function ¢; has a similar definition:

1 N N— M

n(Fiz) = 1—FMZ::0N—M+NJ:’)M(F) (114)
cA* § .
= — 2 (g(FeA") = g(F,0)) exp(G(F, eA"))
Eq. (113) is solved by
AD(F;\) = (115

~ « F / ®
cAA(N) G Fied _A)/ dF" e G A =N (g(F' e A" — \) — gy (F'; cA* — X))
0

~ A* *
— cAAN) (—1 4 Ecotres >)

where we have used the definition, Eq. (114), for ¢; to obtain the last equality.
Using

AAN) = /01 dF AB(F; \), (116)

integration over I’ on both sides of Eq. (115) gives an equation for AA(N)
which is solved by AA(X) = 0, as we might expect, and by

cA* — )\
A

(G(cA* = X)) —G(cA™)) =0 (117)

The smallest value for A solving this equation contributes with the longest
relaxation time

tchaotic _ )\—1 (118)

relax
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to App(F;t) in Eq. (111). An obvious solution is
A= cA”, (119)

A survey of G(x)’s graph shows there are N — 1 other solutions to Eq. (117),
one in each interval |eA*+ M/N, cA*+(M+1)/N|[, where M = 1,2,..., N—1.
So all these solutions correspond to contributions to Apa(F';¢) which decay
faster in time than the mode corresponding to A = ¢A*. We conclude that
the relaxation time in the chaotic phase is

chaotic __ 1
relax T CA*7

(120)

where A* is a function of ¢ given implicitly by Eq. (101).

Since A* ~ ¢ — Caip for ¢ — ceie ~ 07, we see from Eq. (120) that the
relaxation time diverges with exponent -1 at the critical connectivity. This
typical mean-field value for the exponent comes as no surprise; it is after
all a mean-field description we are developing. The value for this exponent
is exact, however, in the limit S = oo of infinitely many species, which we
are considering. The only requirement is that each species depends on a
vanishing fraction of other species — i.e. C'//S = 0 — and that the species
which a given species depends on were chosen at random. Whether this
randomness is quenched or annealed does not matter. This point has been
explained in detail in [22, 23] for an in this respect identical problem.

In the frozen phase, where the order parameter A* = 0, Eq. (117) shows

M 1=G(—)N) (121)

which for a given value of ¢ < ¢4t has N positive solutions for A, one in each
interval JcA* + M/N,cA* + (M + 1)/N[, where M = 0,1,...,N — 1. The
smallest solution, which determines the relaxation time, grows from A = 0 to
A = 1/N for ¢ decreasing from cqi; to 0. So the relaxation time grows from
N to infinity when ¢ grows from 0 to cqqi. This result agrees with the average
relaxation time for isolated species found in appendix D, and the expected
increase in relaxation time with increasing coupling.

We can summarize our results for the relaxation time in the following
implicit expressions for it:

1 = G-ty for ¢ < cui (122)
4l = Gt for > cai (123)

where the solution for #,.a.x is obtained by using the branch of G=! charac-
terized by —1/N < x < oo.
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Figure Captions

Fig. 1 Q, versus { for N = 10 (o), 100 (V), 1000 (A), and 10,000 (O).
The connecting dashed lines are only meant to guide the eye. Poisson
distributions with the same mean values are shown with the symbol e.
In the case of N = 10, the Gaussian distribution with same mean and
variance as () is shown as a solid line.

Fig. 2 NQ; versus t/N for N = oco. Fully drawn curve: exact result from
Eq. (92). Dashed curve: estimate from Eq. (3) with exact value for ¢
taken from Eq. (89).

Fig. 3 The asymptotic activity A* versus the connectivity ¢ for N = 10 and

N =100 according to Eq. (101) (full curves) and according to Eq. (103)
(dotted curve).

Fig. 4 Graph of the function G(x) defined in Eq. (97) in the case of N = 10
(full curve), and its approximation given in Eq. (98) (dotted curve).
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