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We study laminar Ekman boundary layers in rotating systems using an averaging method
similar to the technique of von Kármán and Pohlhausen. The method allows us to explore
nonlinear corrections to the standard Ekman theory even at large Rossby numbers. We
consider both the standard self-similar ansatz for the velocity profile, which assumes that
a single length scale describes the boundary layer structure, and a new non self-similar
ansatz in which the decay and the oscillations of the boundary layer are described by two
different length scales. For both profiles we calculate the up-flow in a vortex core in solid
body rotation analytically. We compare the quantitative predictions of the model with
von Kármán’s exact similarity solution and find that the results for the non self-similar
profile are in almost perfect quantitative agreement with the exact solution and performs
markedly better than the self-similar profile.

1. Introduction
Ekman layers are boundary layers which form in rotating systems at either free or

solid boundaries, typically normal to the axis of rotation. Such boundary layers play
important roles in many geophysical and technical flows including large atmospheric
vortices and source-sink flows in turbines (Lugt 1995). In the bulk, far from any walls,
such flows are essentially two-dimensional with velocities mainly perpendicular to the
axis of rotation. Due to the Ekman layer, however, there is also a small but important
velocity component along the axis of rotation, which is referred to as either Ekman
pumping or suction. A cyclone (larger absolute rotation rate in the bulk than at the
boundary) creates Ekman pumping whereas an anti-cyclone (smaller absolute rotation
rate in the bulk than at the boundary) creates Ekman suction. The properties of Ekman
layers are well-described by linear differential equations when the flow in the rotating
reference system is weak compared with the background rotation, i.e., at low Rossby
number. The Rossby number is defined as the characteristic value of the ratio of the
nonlinear terms and the Coriolis terms in the Navier-Stokes equations in the frame of
reference rotating with the background rotation rate (Batchelor 1967). At large values
of the Rossby number the nonlinear terms become important, which makes it difficult to
solve the governing equations and creates a need for approximate methods.

We model the nonlinear Ekman layers at solid boundaries for flows with rotational sym-
metry using an averaging method similar to the technique introduced by von Kármán
(1921) and Pohlhausen (1921). Owen, Pincombe & Rogers (1985) applied an averaging
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method to describe laminar and turbulent boundary layers in rotating fluids. They used
a self-similar boundary layer profile (described by a single length scale) and focused on a
particular geometry in which up-flow from the boundary layer does not occur because of
the symmetry of the problem. We extend their equations to include the terms describing
up-flow from the boundary layer. The self-similar profile has the same damped oscilla-
tory structure as the solution to the linear Ekman equations but with a boundary layer
thickness which depends on the local Rossby number. To investigate the applicability of
the method we compare the results with the exact similarity solution due to von Kármán
(1921) for a fluid above an infinite rotating disk. The results agree qualitatively, but it
turns out that the quantitative agreement is poor, leading, e.g., to a considerable over-
estimate of the Ekman pumping. We trace this discrepancy to the assumption that a
self-similar ansatz for the velocity profile based on a single length scale can describe both
the oscillatory and the exponential components of the boundary layer. This is correct for
the linear solution but for the nonlinear case there is no basis for such an assumption. We
thus introduce a non self-similar profile which involves two length scales and show that
the boundary layer structure and the up-flow for the non self-similar profile agree almost
perfectly with von Kármán’s exact solution at arbitrary (positive) Rossby number.

The layout of the paper is as follows. In § 2 we briefly outline the linear Ekman theory.
In § 3 we present the two different averaging methods and derive analytical expressions
for the central up-flow velocity in a vortex core in solid body rotation. In § 4 we present
numerical solutions of the averaged equations for a generic source-sink vortex. Finally, in
§ 5 we apply the averaging techniques to the von Kármán flow and compare the results
with the exact solution.

2. Linear Ekman theory
We focus on the flow in a container with rotational symmetry which is rotating about

its vertical axis of symmetry, and we thus apply the Navier-Stokes equations in polar
coordinates written in the frame of reference co-rotating with the container. We let u, v,
and w denote the radial, the azimuthal, and the vertical velocity component, respectively.
In the bulk of the fluid the flow is approximately two-dimensional, independent of the
vertical coordinate z and we denote the azimuthal velocity there by v0. At the bottom
of the container there is a mismatch between the bulk velocity and the rigidly rotating
solid bottom, and therefore an Ekman layer is formed (see, e.g., Batchelor 1967). We
assume that the vertical velocity component is small and from the vertical Navier-Stokes
equation it thus follows that the effective pressure is independent of z and equal to its
value in the geostrophic bulk of the fluid, i.e., far above the bottom Ekman layer. At
small Rossby number the governing equations reduce to the following linear equations

0 = ν
∂2u

∂z2
+ 2Ω (v − v0) (2.1)

0 = ν
∂2v

∂z2
− 2 Ω u , (2.2)

where Ω is the angular velocity of the container. With the boundary conditions u(r, z) =
v(r, z) = 0 at z = 0, u(r, z) → 0 as z →∞, and v(r, z) → v0(r) as z →∞, the solution is

u(r, z) = −v0(r) e−z/δ sin(z/δ) (2.3)
v(r, z) = v0(r) [1− e−z/δ cos(z/δ)] , (2.4)
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where δ =
√

ν/Ω is the boundary layer thickness. The continuity equation links u and w

1
r

∂(ru)
∂r

+
∂w

∂z
= 0 , (2.5)

and since w(r, z) = 0 for z = 0 we have

w(r, z) =
δ

2 r

d(rv0)
dr

( 1− e−z/δ [sin(z/δ) + cos(z/δ)] ) . (2.6)

It follows that the vertical velocity component in the bulk of the fluid is proportional to
the z-component of the vorticity there

w0 =
δ

2 r

d(rv0)
dr

. (2.7)

Depending on the sign of w0, this is referred to as Ekman pumping and Ekman suction.
If the fluid is rotating as a solid body with v0 = C r it follows that

w0 =
( ν

Ω

)1/2

C . (2.8)

A cyclonic vortex of this kind thus generates up-flow whereas and anti-cyclonic vortex
gives rise to down-flow. In the following we calculate nonlinear corrections to (2.8) using
the averaged equations.

3. Averaged boundary layer equations
3.1. Governing equations

The linear equations (2.1) and (2.2) are only valid when the flow in the co-rotating
reference system is weak and the nonlinear terms can be neglected compared to the
Coriolis terms, i.e., at small Rossby number. At larger values of the Rossby number we
approximate the radial and the azimuthal Navier-Stokes equations by boundary layer
equations in which we neglect the derivatives with respect to r in the viscous terms

u
∂u

∂r
+ w

∂u

∂z
− v2 − v2

0

r
= ν

∂2u

∂z2
+ 2Ω(v − v0) (3.1)

u
∂v

∂r
+ w

∂v

∂z
+

uv

r
= ν

∂2v

∂z2
− 2Ωu , (3.2)

where v(r, z) → v0(r) when z → ∞. Using the continuity equation (2.5) we rewrite the
Navier-Stokes equations in a form which is easy to integrate with respect to z

1
r

∂(ru2)
∂r

+
∂(uw)

∂z
− v2 − v2

0

r
= ν

∂2u

∂z2
+ 2Ω(v − v0) (3.3)

1
r2

∂(r2uv)
∂r

+
∂(vw)

∂z
= ν

∂2v

∂z2
− 2Ωu . (3.4)

These two equations are used in the following as the starting point in the derivation of
the averaged equations.
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3.2. Self-similar profile
In the averaging method we make an ansatz on the z-dependence of the velocity compo-
nents, i.e., on the boundary layer structure. Following Owen, Pincombe & Rogers (1985)
we make a straight forward generalization of (2.3) – (2.4) and consider the self-similar
profile

u(r, z) = u0 f(z/δ) (3.5)
v(r, z) = v0 [1− g(z/δ)] , (3.6)

where u0, v0, and δ are functions of r, and where

f(η) ≡ exp(−η) sin η (3.7)
g(η) ≡ exp(−η) cos η . (3.8)

The term “self-similar” is used here to emphasize that the profile does not depend on
both r and z but only on the combination z/δ(r). The governing equations (3.3) and
(3.4) are integrated with respect to z from zero to infinity, and the resulting averaged
equations read

I2
1
r

d(ru2
0δ)

dr
+ (2I4 − I5)

v2
0

r
δ = −νu0

δ
f ′(0)− 2I4Ωv0δ (3.9)

(I1 − I3)
1
r2

d(r2u0v0δ)
dr

− I1
v0

r

d(ru0δ)
dr

=
νv0

δ
g′(0)− 2I1Ωu0δ , (3.10)

where the following definitions of integrals are used

I1 =
∫ ∞

0

dηf(η) =
1
2

, I2 =
∫ ∞

0

dηf2(η) =
1
8

(3.11)

I3 =
∫ ∞

0

dηf(η)g(η) =
1
8

, I4 =
∫ ∞

0

dηg(η) =
1
2

(3.12)

I5 =
∫ ∞

0

dηg2(η) =
3
8

. (3.13)

Equations (3.9) and (3.10) are written for a general self-similar profile as defined by (3.5)
and (3.6). The integrals can be evaluated as shown in (3.11) – (3.13) for the ansatz (3.7)
and (3.8), and the governing equations become

1
8r

d(ru2
0δ)

dr
+

5v2
0

8r
δ = −νu0

δ
− Ωv0δ (3.14)

3
8r2

d(r2u0v0δ)
dr

− v0

2r

d(ru0δ)
dr

= −νv0

δ
− Ωu0δ . (3.15)

Notice that w does not appear in the averaged equations. The flow rate, q, of the radial
inflow is

q ≡ −2πr

∫ ∞

0

dz u = −2πru0

∫ ∞

0

dzf(z/δ) = −πru0δ . (3.16)



Averaging method for nonlinear laminar Ekman layers 5

Owen, Pincombe & Rogers (1985) assumed that q is independent of r and therefore the
second term on the left hand side of (3.15) does not appear in their averaged azimuthal
equation.

With linear velocity profiles u0 = −Ar and v0 = C r, we find that δ becomes in-
dependent of r and the averaged equations (3.14) and (3.15) reduce to the algebraic
equations

3
8

A2 +
5
8

C2 =
ν A

δ2
− Ω C (3.17)

−1
2

AC = −ν C

δ2
+ Ω A , (3.18)

In this special case the Rossby number is by definition

Ro ≡ C

2Ω
. (3.19)

The vertical velocity component in the bulk of the fluid, w0, is through the continuity
equation (2.5) related to the radial velocity component u0

w0 = − 1
2 r

d(ru0δ)
dr

, (3.20)

and thus it follows that the assumption of a linear radial velocity profile leads to

w0 = δ A . (3.21)
By solving (3.17) and (3.18) for δ and A it follows that the nonlinear Ekman pumping
velocity is reduced in comparison with the linear result as the Rossby number is increased

w0

(ν/Ω)1/2
C

=
[

4 + 5 Ro

(4 + Ro)(1 + Ro)2

]1/4

. (3.22)

At Ro = 0 the right hand side is equal to one in agreement with linear Ekman theory
(2.8), and in the limit of infinite Rossby number w0 is independent of Ω and we have
w0 = 201/4

√
ν C ≈ 2.115

√
ν C.

3.3. Non self-similar profile
As we will show in § 5 the self-similar profile leads to predictions which are not in
quantitative agreement with von Kármán’s exact similarity solution. We thus introduce
the following non self-similar boundary layer profile †

u(r, z) = −v0 e−z/δ1 sin(z/δ2) (3.23)
v(r, z) = v0 [ 1− e−z/δ1 cos(z/δ2) ] , (3.24)

where v0, δ1, and δ2 are functions of r. Like the self-similar profile this is a generalization
of (2.3) – (2.4) but now with two length scales describing respectively the decay and

† In this expression we have not allowed for different amplitudes on the radial and azimuthal
fields. Allowing this requires another condition to close the system of equations. We have investi-
gated the case where this other condition is the standard wall curvature compatibility condition,

ν ∂2u
∂z2

∣∣∣
z=0

= 2Ωv0 +
v2
0
r

. The resulting equations are considerably more complex, and lead in

the end to no appreciable improvement in the problems that we have considered.
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the oscillations in the boundary layer structure. At low Rossby number we have δ1 =
δ2 =

√
ν/Ω but in general the two length scales are different. The presence of two length

scales in the solution is apparent in the exact asymptotic solution at large z as shown by
Bödewadt (1940) and Rogers & Lance (1960). Our ansatz has the same structure as the
special asymptotic solution which also satisfies the no-slip boundary condition at z = 0.
The averaged equations are in this case

1
r

d(rv2
0K2)

dr
+

v2
0

r
(2K4 −K5) =

νv0

δ2
− 2Ωv0K4 (3.25)

1
r2

d(r2v2
0K3)

dr
− v0K1

r

d(rv0)
dr

= −νv0

δ1
+ 2Ωv0K1 , (3.26)

where we define

K1 = 4K3 =
δ2
1 δ2

δ2
1 + δ2

2

, K2 =
δ3
1

4(δ2
1 + δ2

2)
(3.27)

K4 =
δ1 δ2

2

δ2
1 + δ2

2

, K5 = K2 +
1
2

K4 . (3.28)

With the linear velocity profile v0 = C r, the averaged equations reduce to

C

(
1
2

δ2
1 +

3
2

δ2
2

)
= ν

δ2
1 + δ2

2

δ1δ2
− 2Ω δ2

2 (3.29)

−C δ2
1 = −ν

δ2
1 + δ2

2

δ1δ2
+ 2 Ω δ2

1 , (3.30)

under the assumption that δ1 and δ2 do not depend on r. Using the non self-similar
profile we thus predict that the nonlinear Ekman pumping velocity is reduced in the
following way in comparison with the linear result

w0

(ν/Ω)1/2
C

=
((2 + Ro)(2 + 3Ro))1/4

√
2(1 + Ro)

(3.31)

Similar to (3.22) the right hand side is equal to one when Ro = 0, and in the limit of
infinite Ro we have w0 = 31/4

√
ν C ≈ 1.316

√
ν C. The non self-similar profile thus gives

a weaker up-flow than the self-similar profile in the limit of large Rossby number.

4. Numerical solution for source-sink vortex
Source-sink flows in a rotating cylindrical container are important examples of vortex

flows controlled by Ekman layers. In this paragraph we consider a generic source-sink
vortex and assume an azimuthal velocity profile of the form

v0 =
Γ

2πr

[
1− exp

(
− r2

κ2

)]
. (4.1)

The velocity profile is linear when r ¿ κ, and it is like a line vortex with circulation Γ
when r À κ. This is similar to a Rankine vortex, and the profile is thus like a smooth
Rankine vortex with a soft transition between the vortex core and the outside velocity
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field. It follows by definition that the z-component of vorticity has a Gaussian profile and
in linear Ekman theory we thus predict that the up-flow is

w0 =

√
ν/ΩΓ
2πκ2

exp
(
− r2

κ2

)
. (4.2)

The vertical velocity component in the bulk of the fluid, w0, is through the continuity
equation related to q

w0 =
1

2πr

dq

dr
, (4.3)

and integration gives the following expression for q in terms of w0

q(r) = Q− 2π

∫ ∞

r

dxw0(x)x , (4.4)

where Q is defined as the limit value of q for large r. At r À κ linear Ekman theory is
valid since the local Rossby number there is small, and the circulation Γ is thus linked
to the flow-rate Q. The velocity profiles now become

v0 =
Q

π
√

ν/Ω r

[
1− exp

(
− r2

κ2

)]
(4.5)

w0 =
Q

πκ2
exp

(
− r2

κ2

)
. (4.6)

To obtain numerical solutions for the self-similar profile we eliminate the boundary
layer thickness δ in the averaged equations (3.9) and (3.10) and use u0, v0, and q as the
dependent variables. We write the equations in the following form assuming the azimuthal
velocity component v0 to be known

u′0 = −3u0v
′
0

v0
− 3u0

r
− 5v2

0

ru0
− 16π2νr2u2

0

q2
− 8Ω

(
u0

v0
+

v0

u0

)
(4.7)

q′ =
3qv′0
v0

+
3q

r
+

8π2νr2u0

q
+

8Ωq

v0
, (4.8)

and supplement the equations by boundary conditions at large r = R:

u0(R) = − Q

π
√

ν/Ω R
(4.9)

q(R) = Q . (4.10)

To solve the equations for the non self-similar profile numerically we use the functions
α ≡ K1 and β ≡ δ1/δ2 and rewrite equations (3.25) and (3.26) in terms of them as

α′ =
2
v0

[(
v′0 +

v0

r
+ 4Ω

)
α− 2ν

δ1

]
(4.11)

β′ = − 1
2αv0

[(
5v′0 +

4v0

r
+ 16Ω

)
αβ +

(
3v0

r
+ 4Ω

)
α

β
− 10ν

δ2

]
. (4.12)

We supplement the equations by the following boundary conditions at large r = R:
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Figure 1. Numerical solution of the averaged equations for the source-sink vortex. (a) The
assumed azimuthal velocity v0, (b) the radial velocity u0, (c) the vertical velocity w0, and (d)
the boundary layer thickness δ all computed at a central Rossby number of 1. The solid curves
show the linear theory, the dashed curves the result obtained with the self-similar profile, and
the dot-dashed curves the result obtained with the non self-similar profile. In (b) the solid and
the dot-dashed curves are identical by assumption and thus only the solid curve is shown.

α(R) =
1
2

√
ν

Ω
(4.13)

β(R) = 1 . (4.14)

Figure 1 shows the solution for u0, w0, and δ with ν = 0.01, Ω = 1, κ = 1, and Q = π/5,
which corresponds to a central Rossby number of 1. At large values of r the solution is
well-described by the linear theory, whereas the boundary layer thickness decreases closer
to the vortex center compared to the constant linear Ekman layer thickness. The central
up-flow velocities are described quantitatively by (3.22) and (3.31) with Ro = 1.

5. The similarity solution by von Kármán
In this paragraph we investigate the applicability of the self-similar and the non self-

similar boundary layer profile by comparing them with the exact similarity solution
introduced by von Kármán. The flow above a flat rotating disk of infinite extension was
studied by von Kármán (1921) who introduced the following ansatz for the velocity field
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u(r, z) = r F (z) (5.1)

v(r, z) = r G(z) (5.2)

w(r, z) = H(z) . (5.3)

With this ansatz the Navier-Stokes equations reduce to a set of ordinary differential
equations for F , G, and H. The Navier-Stokes equations and the continuity equation in
the frame of reference rotating with angular velocity Ω become

F 2 + H F ′ − G2 + C2 = ν F ′′ + 2 Ω (G− C) (5.4)

2 F G + H G′ = ν G′′ − 2 Ω F (5.5)

H H ′ = −P ′ + ν H ′′ (5.6)

2 F + H ′ = 0 , (5.7)

which are to be supplemented by the five boundary conditions

F (0) = 0 F (∞) = 0 (5.8)
G(0) = 0 G(∞) = C (5.9)
H(0) = 0 (5.10)

In the original problem considered by von Kármán the azimuthal velocity goes to zero
far above the disk in laboratory frame corresponding to C = −Ω. Similarly the problem
considered by Bödewadt (1940) of a fluid in solid body rotation above a fixed disk is
obtained with Ω = 0. Linear Ekman theory (2.3), (2.4), and (2.6) is valid at small values
of C.

Figure 2 shows numerical solutions (symbols) of von Kármán’s equations (5.4) – (5.7)
together with results of the averaging method with the self-similar profile (dashed curves)
and the non self-similar profile (solid curves). The solution with the non self-similar
profile has δ1 ≥ δ2 and it captures the damped oscillatory structure of the exact solution
at Ro = 4 markedly better than the self-similar profile. This is particularly evident for
the vertical velocity component shown in figure 2(d) for Rossby numbers between 0 and
8. The asymptotic behavior of the exact solution in the limit of infinite Rossby number
was described by Bödewadt (1940) who found that w0 = 1.349

√
ν C. The prediction,

w0 ≈ 1.316
√

ν C, obtained using the non self-similar profile agrees well with this result
whereas the method using the self-similar profile overestimates the up-flow velocity, w0 ≈
2.115

√
ν C.

6. Conclusions
We have analyzed two methods based on averaging for computing the structure of

nonlinear Ekman layers. We find that a non self-similar velocity profile with separate
length scales for the decay and the oscillations, respectively, give very accurate predic-
tions. We believe that this method will be useful for many important flow configurations
and hope that it will be confronted with accurate measurements of the up-flow in well-
controlled laboratory experiments and ideally with velocity measurements resolving the
Ekman layer structure.
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Figure 2. Numerical solutions of the averaged equations for the von Kármán flow at Ro = 4.
(a) – (c) the boundary layer structure of u, v, and w, and (d) the ratio between the nonlinear
up-flow velocity and the result from linear Ekman theory as function of Ro. The symbols show
the numerical solution of (5.4) – (5.7), the dashed curves the result obtained with the self-similar
profile, and the solid curves the result obtained with the non self-similar profile.
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