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Abstract

Extremely ill-posed learning problems are common in image and spectral
analysis. They are characterized by a vast number of highly correlated inputs,
e.g. pixel or pin values, and a modest number of patterns, e.g. images or
spectra. We show that it is possible to train neural networks to learn such
patterns without using an excessive number of weights, and we devise a test
to decide if new patterns should be included in the training set or whether
they fall within the subspace already explored. The method is applied to the
analysis of PET-images.



1 Introduction

The aim of learning is to match a model to data in such a way that generalization
ability ensues. If the model is overly restrictive it cannot “capture the rule”, hence,
fails to implement the training set. On the other hand if we train a model with too
high capacity for a given data set, it is unlikely that the model will generalize. The
reason is that there will be many different ways to implement the training set in the
model, i.e. to generalize from it. Training will pick up one rule, usually at random,
and it is unlikely that this particular rule will generalize in any desirable way to
new examples. We shall not go into the question of what constitutes a desirable
generalization, but only note that this concept is often related to simplicity: The
most economical model — in terms of free parameters — seems often to be the best.

The solution to the learning problem is therefore not unique, but constitutes an
ill-posed problem (see [Poggio90] for a review). Many ingenious schemes have been
devised in order to design models with various types of simplicity. Regularization
by weight decay and by pruning are two prominent schemes for fine tuning network
capacity (see for example [LeCun90, Poggio90, Svarer93]).

These schemes are, however, aimed at what could be called marginally ill-posed
learning, where the number of parameters in the model is comparable to or smaller
than the number of training examples. In neural net applications, one often faces
a much more singular learning problem, where an example consists of a very large
input vector (for example an image or a spectrum), but where it is nevertheless
the aim to learn and generalize from a relatively small number of examples. This
situation is what we will refer to as extremely ill-posed learning.

In this article we show how it is possible to simplify the extremely ill-posed
learning problem by straightforward linear algebra without loss of generality. The
basic idea is similar to the trick in Singular Value Decomposition [Press&al92],
and works by transposing the problem from the high-dimensional input space to a
low-dimensional “signal space”. The success of this transformation depends on an
assumption of strong correlations between the components of the input vector. We
shall present an a posteriori test for the validity of the method.

In particular we show how this works for two paradigms: supervised learning
based on feed-forward nets and unsupervised learning based on Sangers network.
We use a specific example for illustration and this example has been investigated
using Principal Component Analysis (PCA) in several variants including the fast one
discussed here [Moeller87]. The example concerns feature extraction and interpre-
tation of Positron Emission Tomography (PET) [Moeller87].



2 Learning in input or signal space

Let us consider a learning problem with a training set of p inputs: {x, |a =1,...,p}.
For supervised learning we would also be provided a corresponding set of outputs
{yo}. Let the dimension of the input space be denoted N. The extremely ill-
posed problem occurs for p < N. In this case it is convenient to consider the
linear subspace of input space spanned by the actual inputs of the training set
S = span{x,} = {x|x = Y, cuXa}. For reference we call S the signal space,
although this may not be entirely consistent since it is very likely that future (test)
inputs will be found outside this subspace. We shall discuss this problem in section
3.

The learning problems that we shall consider are based on a number of adaptive
linear forms of the type

h(x)=w-x (1)

where w is an N-dimensional weight vector. Since we only have have p < N
examples the problem of determining w from a set of values of this linear form is
indeed extremely ill-posed.

One solution is obtained by restricting the weight vector to fall within the signal
space, writing

P
W= W)=Y YaXa (2)
a=1

with suitable coefficients ~,. Assuming that the inputs are linearly independent, the
coefficients will be uniquely determined. Let us define the metric in input space

Gap = Xa * Xg (3)

which will be non-singular for linearly independent inputs. It is useful to define the
conjugate vectors

%o = (97" )asXs (4)

satisfying?

'When working in rectilinear skew coordinate systems it is customary to define the conjugate
metric ¢®? = (97 ')ap and using this for raising and lowering indices: x* = g“ﬁX@, etc. We do not
think it worthwhile to introduce this complication here.



Xo ')A(g = 5a5

Then the coefficients are given by the scalar products

A

Yo = W - Xq

It is clear from (1) that the component w, orthogonal to the signal space (2)
plays no role at all, and we shall see below that the network dynamics preserves this
property as long as the dynamics only involves scalar products of the above form.

2.1 Supervised learning with feed-forward nets

Let us model an input-output relation by a standard feed-forward network
nH
y(x)=f |2 Wig(w;-x)],
7=1

where f, g respectively are the output and hidden squashing functions. The network
has ny hidden units, and is in fact a non-linear function of the linear forms, w; -
x, 7 = 1,....,ng of the type discussed above. Clearly this network is extremely
overparametrized, since we need to adapt more than Nny weight-parameters with
only p < Nny examples.

A training scheme like Backpropagation [Rumelhart&al86] is based on a cost
function, for example the mean square error function

p

E=3Y (yo—y(xa).

a=1

The cost function is, as noted above, independent of the orthogonal components for
each input-to-hidden weight vector. Consequently, any derivative of £ with respect
to such a component is zero. We find in fact that the gradient is a linear combination
of the inputs

or

aW]‘

P
= CaXa

a=1

with



Ca = 2(y (Xa) = ya) [ (% Wig (wy, - Xa)) Wig' (w; - xa)

k=1

This implies that the training dynamics

or
5W]‘ = _naw‘
J

preserves signal space. If we initialize the weight-vectors within the signal space,
the dynamics of back-propagation will leave them there.
Expanding the weight vectors in signal space

P
Wi =Y YjaXa (5)
a=1

we note that the natural parameters to optimize are now the expansion coefficients
Y- This explicitly reduces the dimensionality of the optimization problem from
nuN to ngp. We find explicitly the gradient with respect to the expansion coefficents

oF Zp:
— Cjafap
67]75 a=1 !

where the coefficients ¢;, are functions of ~; 3 and ¢,s is given by (3). The gradient
descent dynamics for the input-to-hidden weights

or
57j70f = _77 87
7,

may thus be formulated entirely in terms of the expansion coefficients, when it is
used that w; - X, = 3757;59sa- Consequently, one only has to calculate the metric
once in order to find the optimal weights by means of gradient descent.

What we have achieved here is a weight-sharing construction [LeCun90a] in which
the immense weight vectors w; are controlled by the much smaller set of parameters
v;.6- In section 3 we will discuss how to set up a “smoke alarm” that goes off
whenever a test input has a significant orthogonal component, in which case it
should either be rejected or included in the training set.



2.2 Ill-posed unsupervised learning: Sanger’s rule

Principal component analysis is a very popular tool in exploratory statistics [Jackson91].
The principal components are defined to be the eigenvectors to the (N x N) covari-
ance matrix of the (zero mean centered) inputs,

Cij = — Z l’?l‘? (6)

The first principal component is the eigenvector corresponding to the maximal eigen-
value of C' et cetera. By projecting the inputs onto a selected subset of the principal
components significant data reduction can be obtained while keeping most of the
variance in the data set.

Several network constructions have been proposed for estimation of principal
components [Oja89, Sanger89]. Sangers network is convenient since it directly pro-
vides a given number M of principal components. The network consists of M linear
neurons with output

y]‘ﬂ:W]"Xa, jzl,...,M

and is updated according to the rule [Sanger89]

j
§W; =10 Yja (Xa -3 yk,awk) :

k=1

which guarantees that the principal directions fall out ordered according to size of
eigenvalue, such that weight-vector w; will contain the j'th principal direction and
y; will be the j'th principal component of the input vector.

Just as for the feed-forward network we would rather work in the p-dimensional
signal space. Expanding the weight-vectors as in (5) we find the following update
rule for the coefficients

J
Vi =0 | Yia = D Yis D Yk ko
B k=1
Note that this only depends on the output values

Yia = D G Vi
I}



so that as before one only needs to calculate the metric once and for all in order to
implement the network dynamics in signal space.

Working entirely in signal space it is also possible to calculate the principal
components of the correlation matrix (6). Let us assume that u is an eigen-vector
of the correlation matrix, ¢.e. that Cu = Au. Multiplying from the left by x, we
get

1

=3 gapXp-u =X, - u
Pp

which shows that the signal space vector x,,-u either vanishes or is an eigen-vector of
the matrix ]l;gag with eigen-value A. Since all the eigen-values of the metric are non-
vanishing by the assumption of linear independence, it follows that the two matrices
Ci; and ;—)gag have exactly the same non-vanishing eigen-values. The eigen-vectors
of the non-vanishing eigen-values are related by

u:Zuafca, Uy = X, - U
(o}

The problem of finding the principal components of a small set of large input
vectors has now been reduced to diagonalizing a matrix in the low-dimensional
signal space. This diagonalization may conveniently be carried out using the Sanger
network in signal space.

3 Generalization and rejection

In the preceeding section we have projected an unmanageably large set of inputs
onto the much smaller signal space S. We must now address the question of what
happens when new input vectors are included in the analysis, either for test or for
further training.

A new input will most probably fall outside the already established signal space
for any realistic system with noise. We therefore need to test whether the new
input has a significant component orthogonal to the signal space, in which case we
should reject the input or take actions to include the example in the training set,
i.e. augment the signal space with the new example. If the orthogonal component
is insignificant, on the other hand, we can hopefully trust the output of the network
for this example.

The magnitude of the orthogonal component of an arbitrary vector x is easily
found to be

x1 =x"— Zﬁ:(g_l)aﬁ(x " Xa)(X - Xp)



expressed in quantities that refer to the signal space. A leave-one-out cross-validation
scheme may now be used to obtain a scale for the expected magnitude of the or-
thogonal components [Jackson91].

To do so, we form p subsets of the training set, each containing p — 1 training
examples and one test example. Based on each subset we obtain as described above
the magnitude of the orthogonal component of the left-out example. Since inversion
of a p x p matrix effectively involves the inversion of all submatrices, it is not
surprising that no further calculation has to be done beyond the inversion of the
original p x p metric. From the definition (4) we find easily the relation

A

(97 )as Xa I L
Xy = — — Xg + =X, tX
%;y (97 aa (9

which resolves the example x, into a component parallel to the subspace spanned
by all the other p — 1 examples, and a component orthogonal to this subspace. The
magnitude of the orthogonal component is now found to be

13N\2
1
(Xo;) — Siﬂ2 ¢a — 71
X5 Gaa(97 ) aa

defining the elevation ¢, between the vector and the subspace.

The statistics of the leave-one-out sample can be used to get a test for significance
of the orthogonal components of future inputs. There are several options. We
could test for significance under a hypothesis on their distribution. Alternatively,
a pragmatic approach would be to let the alarm go off whenever an orthogonal
component has an elevation larger than any of the ones seen in the training set.
Asymptotic expressions for the statistics of the leave-one-out sample are given in

[Jackson91].

4 Application to PET scans

Positron-Emission-Tomography (PET) is an important tool for providing high resolu-
tion 3-D images of metabolic and physiological processes and is a widely used clinical
and experimental method for study of the human brain. When correlated with in-
formation about the physical stimuli and physiological state (cognitive functions,

8



Figure 1: Network architecture (with 147030 input units, 3 hidden units and 1 output
unit) for predicting the frequency of an activation paradigm from a PET volume scan of
four subjects. The network is trained from 28 examples, hence, gravely overparametrized,
.e. an extremely ill-posed learning problem. By projecting the learning problem onto
signal space, however, the computational burden is dramatically reduced. By further use
of weight decay the problem is converted to a well-posed learning problem with about 10
effective parameters learned. In the right panel is indicated how the weights connecting
to particular slice can be visualized as an image.

motion, etc.) such scans provide clues to the underlying functional connectivity
between essential nodes of the brain at a given behavior.

Most previous studies on correlation of activity patterns and brain function are
based on a combination of PCA and linear analysis. However, in a recent study,
neural networks were used to discriminate PET images of a control group from that
of patients with Alzheimer’s desease [Kippenham92]. Singular Value Decomposition
(SVD) techniques, as descibed in this paper, have been used on PET scans to facilitate
(linear) PCA analysis. In particular, it is an integral part of the socalled Scaled Sub-
profile Model [Moeller87].

In a collaborative effort, involving several hospitals and other research insti-
tutions in the US, Japan, and FEurope, we currently investigate the possibility of
invoking artificial neural nets for analysis of functional connectivity in the human
brain. In this report we use preliminary PET-based results to illustrate the role
of signal space projections for non-linear ill-posed learning using neural nets. The
PET images of this example were recorded at the Department of Neurology at The
University Hospital of Copenhagen, more details regarding the experiment and the
particular activation paradigms used may be found in [Law94].



Subjects were scanned under two conditions, rest, and a condition with a partic-
ular visio-motor activity (in PET-slang such conditions are referred to as activation
paradigms). The activation paradigm is repeated at seven different frequencies (in-
cluding rest, counted as zero frequency), resulting in a total of 7 scans per subject.
In this experiment the objective is to predict the frequency from the filtered volume
data from a PET scan, the training database containing data from four subjects
(i.e. a total of 28 examples). Input to the network is created by a standardized
normalization procedure aimed at eliminating relative displacements and rotations
of subjects, and furthermore, the input volume is centered which means that the
average activity pattern of the volume has been calculated and subtracted.

HIDDEN UNIT #1 HIDDEN UNIT #2 HIDDEN UNIT #3

Figure 2: Image visualization of the weights connecting from three hidden units to a
slice of the PET volume scan. The weights are shown in a linear gray scale with positive
weights bright, and negative weights dark. Note that the hidden units pick up signals
from different regions of the activated brain (outlined in black).

Since the volume scan contains 26 slices each holding 65 x 87 pixels, ¢.e. 147,030
voxels, the initial network, having 3 hidden units, and a single output, is gravely
overparameterized (with more than 400,000 weights and only 28 examples), and the
learning problem is indeed extremely ill-posed. By projecting the input volumes
onto signal space the dimensionality of input space is brought from 147,030 down
to 28. While this projection, on its own, does not hinder overfitting it does reduce
the computational burden dramatically. To minimize overtraining weight decay has
been applied. The magnitude of the weight decay parameter has been determined
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so that the effective number of fitted parameters? is Neg = 10. The network archi-
tecture is visualized in figure 1. In the right panel of the figure we have marked a
particular slice of the voxelated volume, — the weights of each of the three hidden
units connecting to this slice are pictured in figure 2, note that the hidden units
pick up different, and rather well defined, regions of the activated brain. Current
research is aimed at interpretation of such weight images (weight volumes). For
further illustration of the ability of the particular network we show in figure 3 the
training set frequency predictions.
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Figure 3: Prediction accuracy of the trained network on the 28 data points in the training
set. The network was trained using a weight decay of o = 0.06, this leaves about 10
effective degrees of freedom for the fit.

5 Conclusion

We have provided a general recipe for handling extremely ill-posed learning prob-
lems. Whenever a learning system based on adaptive linear forms on a huge input
space is to be trained on a small training set, it is advantageous to reexpress the lin-
ear forms in terms of the training set input vectors without loss of information. The

2The effective number of parameters has been calculated as Neg = Tr [HJ_lHJ_l], where H
is the second derivative matrix of the training set error, the Hessian, and, J = H + a1, is the
Hessian of the cost function augmented by weight decay (see e.g. [Moody92, Svarer93])
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mechanism can be viewed as a particular construction for obtaining massive weight
sharing. We have shown how the mechanism works for supervised learning based on
the conventional feed-forward net as well as for unsupervised learning based on the
Sanger network. In addition to a dramatic reduction of computational effort, the
scheme provides a natural mechanism for outlier rejection. In our example we have
shown how a network with more than 400,000 weights may be adapted for analysis
of PET images.
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