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Abstract

Extremely ill�posed learning problems are common in image and spectral
analysis� They are characterized by a vast number of highly correlated inputs�
e�g� pixel or pin values� and a modest number of patterns� e�g� images or
spectra� We show that it is possible to train neural networks to learn such
patterns without using an excessive number of weights� and we devise a test
to decide if new patterns should be included in the training set or whether
they fall within the subspace already explored� The method is applied to the
analysis of pet�images�
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� Introduction

The aim of learning is to match a model to data in such a way that generalization
ability ensues� If the model is overly restrictive it cannot �capture the rule�� hence�
fails to implement the training set� On the other hand if we train a model with too
high capacity for a given data set� it is unlikely that the model will generalize� The
reason is that there will be many di�erent ways to implement the training set in the
model� i�e� to generalize from it� Training will pick up one rule� usually at random�
and it is unlikely that this particular rule will generalize in any desirable way to
new examples� We shall not go into the question of what constitutes a desirable
generalization� but only note that this concept is often related to simplicity� The
most economical model � in terms of free parameters � seems often to be the best�

The solution to the learning problem is therefore not unique� but constitutes an
ill�posed problem 	see 
Poggio�� for a review�� Many ingenious schemes have been
devised in order to design models with various types of simplicity� Regularization
by weight decay and by pruning are two prominent schemes for �ne tuning network
capacity 	see for example 
LeCun��� Poggio��� Svarer����

These schemes are� however� aimed at what could be called marginally ill�posed

learning� where the number of parameters in the model is comparable to or smaller
than the number of training examples� In neural net applications� one often faces
a much more singular learning problem� where an example consists of a very large
input vector 	for example an image or a spectrum�� but where it is nevertheless
the aim to learn and generalize from a relatively small number of examples� This
situation is what we will refer to as extremely ill�posed learning�

In this article we show how it is possible to simplify the extremely ill�posed
learning problem by straightforward linear algebra without loss of generality� The
basic idea is similar to the trick in Singular Value Decomposition 
Press�al���
and works by transposing the problem from the high�dimensional input space to a
low�dimensional �signal space�� The success of this transformation depends on an
assumption of strong correlations between the components of the input vector� We
shall present an a posteriori test for the validity of the method�

In particular we show how this works for two paradigms� supervised learning
based on feed�forward nets and unsupervised learning based on Sangers network�
We use a speci�c example for illustration and this example has been investigated
using Principal Component Analysis 	pca� in several variants including the fast one
discussed here 
Moeller��� The example concerns feature extraction and interpre�
tation of Positron Emission Tomography 	pet� 
Moeller���
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� Learning in input or signal space

Let us consider a learning problem with a training set of p inputs� fx� j� � �� ���� pg�
For supervised learning we would also be provided a corresponding set of outputs
fy�g� Let the dimension of the input space be denoted N � The extremely ill�
posed problem occurs for p � N � In this case it is convenient to consider the
linear subspace of input space spanned by the actual inputs of the training set
S � spanfx�g � fx jx �

P
� c�x�g� For reference we call S the signal space�

although this may not be entirely consistent since it is very likely that future 	test�
inputs will be found outside this subspace� We shall discuss this problem in section
��

The learning problems that we shall consider are based on a number of adaptive
linear forms of the type

h	x� � w � x 	��

where w is an N �dimensional weight vector� Since we only have have p � N

examples the problem of determining w from a set of values of this linear form is
indeed extremely ill�posed�

One solution is obtained by restricting the weight vector to fall within the signal
space� writing

w � wk �
pX

���

��x� 	��

with suitable coe�cients ��� Assuming that the inputs are linearly independent� the
coe�cients will be uniquely determined� Let us de�ne the metric in input space

g�� � x� � x� 	��

which will be non�singular for linearly independent inputs� It is useful to de�ne the
conjugate vectors

�x� �
X
�

	g�����x� 	��

satisfying�

�When working in rectilinear skew coordinate systems it is customary to de�ne the conjugate
metric g�� � �g����� and using this for raising and lowering indices� x� � g��x� � etc� We do not
think it worthwhile to introduce this complication here�
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x� � �x� � ���

Then the coe�cients are given by the scalar products

�� � w � �x�

It is clear from 	�� that the component w� orthogonal to the signal space 	��
plays no role at all� and we shall see below that the network dynamics preserves this
property as long as the dynamics only involves scalar products of the above form�

��� Supervised learning with feed�forward nets

Let us model an input�output relation by a standard feed�forward network

y 	x� � f

�
� nHX
j��

Wjg 	wj � x�

�
A �

where f� g respectively are the output and hidden squashing functions� The network
has nH hidden units� and is in fact a non�linear function of the linear forms� wj �
x� j � �� ���� nH of the type discussed above� Clearly this network is extremely
overparametrized� since we need to adapt more than NnH weight�parameters with
only p� NnH examples�

A training scheme like Backpropagation 
Rumelhart�al�� is based on a cost
function� for example the mean square error function

E �
pX

���

	y� � y 	x���
�
�

The cost function is� as noted above� independent of the orthogonal components for
each input�to�hidden weight vector� Consequently� any derivative of E with respect
to such a component is zero� We �nd in fact that the gradient is a linear combination
of the inputs

�E

�wj

�
pX

���

cj��x�

with
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cj�� � � 	y 	x��� y�� f
�

�
nHX
k��

Wkg 	wk � x��

�
Wjg

� 	wj � x��

This implies that the training dynamics

�wj � ��
�E

�wj

preserves signal space� If we initialize the weight�vectors within the signal space�
the dynamics of back�propagation will leave them there�

Expanding the weight vectors in signal space

wj �
pX

���

�j��x� 	��

we note that the natural parameters to optimize are now the expansion coe�cients
�j��� This explicitly reduces the dimensionality of the optimization problem from
nHN to nHp� We �nd explicitly the gradient with respect to the expansion coe�cents

�E

��j��
�

pX
���

cj��g��

where the coe�cients cj�� are functions of �j�� and g�� is given by 	��� The gradient
descent dynamics for the input�to�hidden weights

��j�� � ��
�E

��j��

may thus be formulated entirely in terms of the expansion coe�cients� when it is
used that wj � x� �

P
� �j��g��� Consequently� one only has to calculate the metric

once in order to �nd the optimal weights by means of gradient descent�
What we have achieved here is a weight�sharing construction 
LeCun��a in which

the immense weight vectors wj are controlled by the much smaller set of parameters
�j��� In section � we will discuss how to set up a �smoke alarm� that goes o�
whenever a test input has a signi�cant orthogonal component� in which case it
should either be rejected or included in the training set�
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��� Ill�posed unsupervised learning� Sanger�s rule

Principal component analysis is a very popular tool in exploratory statistics 
Jackson���
The principal components are de�ned to be the eigenvectors to the 	N �N� covari�
ance matrix of the 	zero mean centered� inputs�

Cij �
�

p

pX
���

x�i x
�
j 	��

The �rst principal component is the eigenvector corresponding to the maximal eigen�
value of C et cetera� By projecting the inputs onto a selected subset of the principal
components signi�cant data reduction can be obtained while keeping most of the
variance in the data set�

Several network constructions have been proposed for estimation of principal
components 
Oja��� Sanger��� Sangers network is convenient since it directly pro�
vides a given numberM of principal components� The network consists of M linear
neurons with output

yj�� � wj � x�� j � �� � � � �M

and is updated according to the rule 
Sanger��

�wj � �
X
�

yj��

�
�x� �

jX
k��

yk��wk

�
A �

which guarantees that the principal directions fall out ordered according to size of
eigenvalue� such that weight�vector wj will contain the j�th principal direction and
yj will be the j�th principal component of the input vector�

Just as for the feed�forward network we would rather work in the p�dimensional
signal space� Expanding the weight�vectors as in 	�� we �nd the following update
rule for the coe�cients

��j�� � �

�
�yj�� �X

�

yj��

jX
k��

yk���k��

�
A

Note that this only depends on the output values

yj�� �
X
�

g���j��
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so that as before one only needs to calculate the metric once and for all in order to
implement the network dynamics in signal space�

Working entirely in signal space it is also possible to calculate the principal
components of the correlation matrix 	��� Let us assume that u is an eigen�vector
of the correlation matrix� i�e� that Cu � 	u� Multiplying from the left by x� we
get

�

p

X
�

g��x� � u � 	x� � u

which shows that the signal space vector x��u either vanishes or is an eigen�vector of
the matrix �

p
g�� with eigen�value 	� Since all the eigen�values of the metric are non�

vanishing by the assumption of linear independence� it follows that the two matrices
Cij and

�

p
g�� have exactly the same non�vanishing eigen�values� The eigen�vectors

of the non�vanishing eigen�values are related by

u �
X
�

u��x�� u� � x� � u

The problem of �nding the principal components of a small set of large input
vectors has now been reduced to diagonalizing a matrix in the low�dimensional
signal space� This diagonalization may conveniently be carried out using the Sanger
network in signal space�

� Generalization and rejection

In the preceeding section we have projected an unmanageably large set of inputs
onto the much smaller signal space S� We must now address the question of what
happens when new input vectors are included in the analysis� either for test or for
further training�

A new input will most probably fall outside the already established signal space
for any realistic system with noise� We therefore need to test whether the new
input has a signi�cant component orthogonal to the signal space� in which case we
should reject the input or take actions to include the example in the training set�
i�e� augment the signal space with the new example� If the orthogonal component
is insigni�cant� on the other hand� we can hopefully trust the output of the network
for this example�

The magnitude of the orthogonal component of an arbitrary vector x is easily
found to be

x
�

� � x
� �

X
��

	g�����	x � x��	x � x��
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expressed in quantities that refer to the signal space� A leave�one�out cross�validation
scheme may now be used to obtain a scale for the expected magnitude of the or�
thogonal components 
Jackson���

To do so� we form p subsets of the training set� each containing p � � training
examples and one test example� Based on each subset we obtain as described above
the magnitude of the orthogonal component of the left�out example� Since inversion
of a p � p matrix e�ectively involves the inversion of all submatrices� it is not
surprising that no further calculation has to be done beyond the inversion of the
original p � p metric� From the de�nition 	�� we �nd easily the relation

x� � �
X
� ���

	g�����
	g�����

x� �
�x�

	g�����
� x

k
� � x

�
�

which resolves the example x� into a component parallel to the subspace spanned
by all the other p� � examples� and a component orthogonal to this subspace� The
magnitude of the orthogonal component is now found to be

	x�� �
� �

�

	g�����

The size of the orthogonal component relative to the size of the vector is

	x�� �
�

x��

� sin� 
� �
�

g��	g�����

de�ning the elevation 
� between the vector and the subspace�
The statistics of the leave�one�out sample can be used to get a test for signi�cance

of the orthogonal components of future inputs� There are several options� We
could test for signi�cance under a hypothesis on their distribution� Alternatively�
a pragmatic approach would be to let the alarm go o� whenever an orthogonal
component has an elevation larger than any of the ones seen in the training set�
Asymptotic expressions for the statistics of the leave�one�out sample are given in

Jackson���

� Application to pet scans

Positron�Emission�Tomography 	pet� is an important tool for providing high resolu�
tion ��D images of metabolic and physiological processes and is a widely used clinical
and experimental method for study of the human brain� When correlated with in�
formation about the physical stimuli and physiological state 	cognitive functions�
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Figure �� Network architecture �with ���	
	 input units� 
 hidden units and � output
unit� for predicting the frequency of an activation paradigm from a pet volume scan of
four subjects� The network is trained from � examples� hence� gravely overparametrized�
i�e� an extremely ill�posed learning problem� By projecting the learning problem onto
signal space� however� the computational burden is dramatically reduced� By further use
of weight decay the problem is converted to a well�posed learning problem with about �	
e�ective parameters learned� In the right panel is indicated how the weights connecting
to particular slice can be visualized as an image�

motion� etc�� such scans provide clues to the underlying functional connectivity
between essential nodes of the brain at a given behavior�

Most previous studies on correlation of activity patterns and brain function are
based on a combination of pca and linear analysis� However� in a recent study�
neural networks were used to discriminate pet images of a control group from that
of patients with Alzheimer�s desease 
Kippenham��� Singular Value Decomposition
	svd� techniques� as descibed in this paper� have been used on pet scans to facilitate
	linear� pca analysis� In particular� it is an integral part of the socalled Scaled Sub�

pro�le Model 
Moeller���
In a collaborative e�ort� involving several hospitals and other research insti�

tutions in the US� Japan� and Europe� we currently investigate the possibility of
invoking arti�cial neural nets for analysis of functional connectivity in the human
brain� In this report we use preliminary pet�based results to illustrate the role
of signal space projections for non�linear ill�posed learning using neural nets� The
pet images of this example were recorded at the Department of Neurology at The
University Hospital of Copenhagen� more details regarding the experiment and the
particular activation paradigms used may be found in 
Law���
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Subjects were scanned under two conditions� rest� and a condition with a partic�
ular visio�motor activity 	in pet�slang such conditions are referred to as activation
paradigms�� The activation paradigm is repeated at seven di�erent frequencies 	in�
cluding rest� counted as zero frequency�� resulting in a total of � scans per subject�
In this experiment the objective is to predict the frequency from the �ltered volume
data from a pet scan� the training database containing data from four subjects
	i�e� a total of �� examples�� Input to the network is created by a standardized
normalization procedure aimed at eliminating relative displacements and rotations
of subjects� and furthermore� the input volume is centered which means that the
average activity pattern of the volume has been calculated and subtracted�

HIDDEN UNIT #1 HIDDEN UNIT #2 HIDDEN UNIT #3

Figure �� Image visualization of the weights connecting from three hidden units to a
slice of the PET volume scan� The weights are shown in a linear gray scale with positive
weights bright� and negative weights dark� Note that the hidden units pick up signals
from di�erent regions of the activated brain �outlined in black��

Since the volume scan contains �� slices each holding ��� �� pixels� i�e� �������
voxels� the initial network� having � hidden units� and a single output� is gravely
overparameterized 	with more than ������� weights and only �� examples�� and the
learning problem is indeed extremely ill�posed� By projecting the input volumes
onto signal space the dimensionality of input space is brought from ������� down
to ��� While this projection� on its own� does not hinder over�tting it does reduce
the computational burden dramatically� To minimize overtraining weight decay has
been applied� The magnitude of the weight decay parameter has been determined
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so that the e�ective number of �tted parameters� is Ne� � ��� The network archi�
tecture is visualized in �gure �� In the right panel of the �gure we have marked a
particular slice of the voxelated volume� � the weights of each of the three hidden
units connecting to this slice are pictured in �gure �� note that the hidden units
pick up di�erent� and rather well de�ned� regions of the activated brain� Current
research is aimed at interpretation of such weight images 	weight volumes�� For
further illustration of the ability of the particular network we show in �gure � the
training set frequency predictions�
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Figure �� Prediction accuracy of the trained network on the � data points in the training
set� The network was trained using a weight decay of � � 	�	�� this leaves about �	
e�ective degrees of freedom for the �t�

� Conclusion

We have provided a general recipe for handling extremely ill�posed learning prob�
lems� Whenever a learning system based on adaptive linear forms on a huge input
space is to be trained on a small training set� it is advantageous to reexpress the lin�
ear forms in terms of the training set input vectors without loss of information� The

�The e�ective number of parameters has been calculated as Ne� � Tr
�
HJ

��
HJ

��
�
� where H

is the second derivative matrix of the training set error� the Hessian� and� J � H 	 ��� is the
Hessian of the cost function augmented by weight decay �see e�g� 
Moody��� Svarer���
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mechanism can be viewed as a particular construction for obtaining massive weight
sharing� We have shown how the mechanism works for supervised learning based on
the conventional feed�forward net as well as for unsupervised learning based on the
Sanger network� In addition to a dramatic reduction of computational e�ort� the
scheme provides a natural mechanism for outlier rejection� In our example we have
shown how a network with more than ������� weights may be adapted for analysis
of PET images�
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