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In most learning problems, adaptation to given examples is well-posed because the num-
ber of examples far exceeds the number of internal parameters in the learning machine.
Extremely ill-posed learning problems are, however, common in image and spectral anal-
ysis. They are characterized by a vast number of highly correlated inputs, €.¢. pixel or
pin values, and a modest number of patterns, €.¢. images or spectra. In this paper we
show, for the case of a set of PET images differing only in the values of one stimulus
parameter, that it is possible to train a neural network to learn the underlying rule with-
out using an excessive number of network weights or large amounts of computer time.
The method is based upon the observation that the standard learning rules conserve the
subspace spanned by the input images.

1. Introduction

The aim of learning is to match a model to data in such a way that generaliza-
tion ability ensues. Whether this is possible depends intricately on the training
procedure and on the architecture of the learning machine. If the model is overly
restrictive, it cannot “capture the rule” hence, fails to implement the training set.
On the other hand if we train a model with too high capacity for a given data set,
it 1s unlikely that the model will generalize. The reason is that there will be many
different ways to implement the training set in the model, z.e. to generalize from
it. Training will pick up one rule, usually at random, and it is unlikely that this
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particular rule will generalize in any desirable way to new examples. We shall not
go into the question of what constitutes a desirable generalization, but only note
that this concept 1s often related to simplicity: The most economical model — in
terms of free parameters — seems often to be the best.

A first guide to the learning problem can be obtained from a comparison of
the number of examples, p, used for training, and the number of parameters, n,
used to implement the model. In order to allow a model to have sufficient initial
capacity, the number of parameters may conveniently be chosen to be of the order
of the number of examples n & p. Thus, the solution to the learning problem is in
general not unique, but constitutes an ill-posed problem (see'® for a review). Many
ingenious schemes have been devised in order to reduce the complexity of the final

model5 10

, such that in the end one has effectively n < p. Regularization by weight
decay and by pruning are two prominent schemes for fine tuning of the network
capacity (see for example?).

These schemes are, however, aimed at what could be called marginally ill-posed
learning, where the number of parameters in the model initially is comparable to or
smaller than the number of training examples, n < p. In neural net applications,
one often faces a much more singular learning problem, where an example consists
of a very large input vector (for example an image or a spectrum), but where it
is nevertheless the aim to learn and generalize from a relatively small number of
examples. This situation, where initially n >> p, was recently analysed in! and is
what we refer to as extremely ill-posed learning.

However, we showed how it i1s possible to cure the extremely ill-posed learning
problem by straightforward linear algebra without loss of generality. The basic idea
is similar to the trick that enters Singular Value Decomposition'!, which works by
transposing the problem from the high-dimensional input space to a low-dimensional
“signal space”. The effect of the procedure is to introduce massive weight sharing
by constraining the network weights to a low-dimensional subspace. By this trans-
formation the extremely ill-posed problem is converted to a marginally ill-posed
problem which can then be handled by, regularization, e.g., using weight decay as
in'. In this presentation we review the scheme for handling extremely ill-posed prob-
lems and we present an alternative approach for regularization of the transformed
problem based on pruning of superflous network weights.

There 1s of course no such thing as a free lunch, so the success of the transfor-
mation depends on an assumption of strong correlations between the components
of the input vector. We shall in turn present an a posterior: test for the validity of
this assumption.

In particular we show how the cure works for backpropagation learning in a feed-
forward network (it also works for unsupervised learning!). As learning problem
we consider a set of images obtained from Positron Emission Tomography (PET)®.
Neural networks have been used for diagnostic purposes by Kippenham et al*. In
our case, a single parameter, the frequency of induced saccadic eye motion, is varied,
and the aim is to learn to predict the frequency from the image. We show that even



Massive Weight Sharing: A Cure for Extremely Ill-posed Problems 3

if the network a prior: contains of the order of 420,000 parameters, it is nevertheless
possible to capture the one-parametric rule, using only 48 images! Furthermore, we
present an analysis of the pruned network, showing that the network model discards
input channels that are related to “inter-subject” variation. Although these inputs
carry large parts of the variance in the data set they are largely irrelevant from a
modeling point of view. This finding extends recent results obtained from linear
models (using the so-called Scaled Subprofile Model?), to the realm of non-linear
modeling.

2. Supervised learning in signal space

Let us consider a supervised learning problem with a training set consisting
of p inputs: {x, | = 1,...,p} and a corresponding set of outputs {y,}. Let the
dimension of the input space be denoted N. Let the network be of the usual feed-
forward type with one layer of L hidden neurons and a single linear output neuron.
Then the number of parameters — weights and thresholds —isn = (N +2)L + 1.

The input-output relation of this network 1s
L
y(x) = > Wif(w;-x—6;) -6, (1)
ji=1

where f is the hidden unit squashing functions and the thresholds are denoted
¢; and © for the hidden and output neurons, respectively. The input-to-hidden
weights are vectors in the N-dimensional input space and denoted w; for those
weights connected with the j-th hidden neuron. The hidden-to-output weights are
denoted W; and may be thought of as importance coefficients for a committee made
up by the neurons of the hidden layer.

A training scheme like Backpropagation'? is based on a cost function, for example
the mean square error

FE =

N | —

> (v — yl(xa))”

The training dynamics for the non-linear neurons in the hidden layer is of the
gradient descent type!?

oF

whereas the hidden-to-output weights may be determined by global minimization
of the cost function which 1s quadratic in these parameters.

It is evident from the form of the cost function and the network equation (1)
that the gradient is a linear combination of the input vectors
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where the coefficients are given by
¢§ = (Yo = Y(xa))W; ' (W) - X0 = 05) (2)

This implies that the training dynamics preserves signal space. If we initialize the
weight-vectors within the signal space, the dynamics of back-propagation will leave
them there.

In the normal case where the number of examples is greater than the number of
input values, this is of no interest. In the extremely ill-posed problem which occurs
for p < N, it i1s highly useful to work entirely within the much smaller signal space
spanned by the actual inputs of the training set S = span{x, }.

Expanding the weight vectors in signal space

P
_ @
Wi = Z Ty Xe
a=1

we note that the natural parameters to optimize are now the expansion coefficients
7. This explicitly reduces the dimensionality of the optimization problem from
LN to Lp <« LN. The gradient descent dynamics for the y-coefficients becomes

oF

"= e
J

and the gradient is explicitly found to be

OE <,
5=
67] a=1

where

Jap = Xa - Xp

is the metric tensor of the signal subspace of the full input space. The c-coefficients
(2) may also be expressed in terms of the y’s

¢§ = (Yo = YW ' | D 9as ) — 65
B
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and this is also true for the network equation (1).

What we have achieved here is a weight-sharing construction” in which the
immense weight vectors w; are controlled by the much smaller set of parameters
77- A similar dimensional reduction may also be carried out for all extremely
ill-posed learning problems that are based on adaptive linear forms of the type
h(x) = w - x, for example Sanger’s network for principal value decomposition (see

ref).

3. Using Principal components

In the generic case the metric gos will be non-singular, ¢.e. have non-zero
eigenvalues, A,. Denoting the orthonormal eigenvectors of gag by eap (satisfy-
ing Zv G3v€ay = Aa€ap), We may define a set of eigen-images e, = \/LH Zﬁ capXg,
which are easily seen to be orthonormal themselves. These p images constitute
the principal components of the input space and diagonalize (with the same eigen-
values) the input correlation matrix ), XoXo. The remaining N — p eigen-images
of this matrix all have vanishing eigen-values and are orthogonal to the signal space
spanned by the inputs and thus of no importance for the training process. No-
tice that in order to calculate the non-trivial eigen-images, it is only necessary to
diagonalize the generally much smaller matrix, gos (in accordance with SVD'.

It is sometimes convenient to formulate the training algorithm entirely in the
principal images. Writing w; -x, = Zﬁ (w;-eg)(eg-x,) Wwe see that we may simply
train the eigen-coordinates of the weights (w; - eg) using the eigen-coordinates of
the images (eg - xo) as inputs. This has been done in the example presented below.

4. Generalization and rejection

In the preceeding section we have projected an unmanageably large set of inputs
onto the much smaller signal space S. We must now address the question of what
happens when new input vectors are included in the analysis, either for test or for
further training.

A new input will most probably fall outside the already established signal space
for any realistic system with noise. We therefore need to test whether the new
input has a significant component orthogonal to the signal space; in which case we
should reject the input or take actions to include the example in the training set,
1.e. augment the signal space with the new example. If the orthogonal component
is insignificant, on the other hand, we can hopefully trust the output of the network
for this example.

The magnitude of the orthogonal component of an arbitrary vector x is easily
found to be!

(1) = x* = (97 ap(x - xa)(x - x5)

af
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expressed in quantities that refer to the signal space. A leave-one-out cross-validation
scheme may now be used to obtain a scale for the expected magnitude of the or-
thogonal components?.

To do so, we form p subsets of the training set, each containing p — 1 training
examples and one test example. Based on each subset we obtain as described
above the magnitude of the orthogonal component of the left-out example. Since
inversion of a p X p matrix effectively involves the inversion of all submatrices, 1t 1s
not surprising that no further calculation has to be done beyond the inversion of
the original p x p metric. The magnitude of the orthogonal component is found to

be

(Xi)z ) 1
= S1n =
X2 b0 = T Dan

where we have introduced the elevation ¢, between the vector and the subspace.
The statistics of the leave-one-out sample can be used to get a test for significance
of the orthogonal components of future inputs. There are several options. We
could test for significance under a hypothesis on their distribution. Alternatively,
a pragmatic approach would be to let the alarm go off whenever an orthogonal
component has an elevation larger than any of the ones seen in the training set.

5. Application to PET scans

Positron Emission Tomography (PET) is an important tool for mapping metabolic
processes in the human brain. PET scans provide reasonably fine grained, three-
dimensional information on patterns of metabolic activity. When correlated with
information about physical and mental conditions (cognitive functions, motion, etc.)
such scans provide clues to brain function and functional connectivity.

Most previous studies on correlation of activity patterns and brain function
are based on a combination of PcA and linear analysis. However, in a recent study,
neural networks were used to discriminate PET scans of a control group from those of
patients with Alzheimer’s disease*. Singular Value Decomposition (svD) techniques
have been used on PET scans to facilitate (linear) Pca analysis. In particular, it has
become an integral part of the socalled Scaled Subprofile ModeP:'3.

In this report we use preliminary PET-based results to illustrate the role of
signal space projections for non-linear ill-posed learning using neural nets. The
PET images of this example were recorded at the Department of Neurology at The
University Hospital of Copenhagen®.

Subjects were scanned under two conditions, one during rest, and one with a
particular visual activity, in this case a voluntary saccadic eye movement consisting
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in tracking a moving light. The activation paradigm 1s repeated at six different
frequencies and two rest states, counted as zero frequency, resulting in a total of 8
scans per subject. Altogether 8 subjects were examined resulting in a total of 64
brain volume images. Of these 48 were randomly chosen as training examples and
16 used for validation and testing.

In this analysis the objective is to predict the frequency from the filtered vol-
ume data from a PET scan. Input to the network is created by a standardized
normalization procedure aimed at eliminating relative displacements and rotations
of subjects, and furthermore, the input volume is centered which means that the
average activity pattern of the volume has been calculated and subtracted.

Learn set, non-linear model
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Fig. 1. Training and test error for an extremely ill-posed problem. In the first panel of
the figure the output of the pruned network is compared to the control frequency. In the
second and third, the performance of the pruned network on the validation and test sets
is displayed.

Since the volume scan after coregistration and stereotactic normalization con-
tains 25 slices each holding 65 x 87 pixels, 7.e. 141,375 voxels, the initial network,
having 3 hidden units, and a single output, is gravely overparameterized (with about
420,000 weights and only 48 examples), The learning problem is indeed extremely
ill-posed. By projecting the input volumes onto signal space the dimensionality
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of input space is brought from 141,375 down to 47 (the average image has been
subtracted).

While this projection, on its own, does not hinder overfitting it does reduce the
computational burden dramatically. To further optimize the capacity of the trained
network, we here investigate pruning by Optimal Brain Damage®. In this scheme
second order properties of the error function (the Hessian) are used to select the
candidates for connections to be severed. As pruning proceeds, the training set error
increases because of the loss of degrees freedom available for the fit. To estimate
the more interesting generalization ability we adopt a cross-validation procedure.
The test set consisting of 16 randomly selected cases is divided into a test set and
a validation set. The validation set is used to identify the optimal network among
the nested family of pruned nets. The remaining test cases are used to provide an
unbiased estimate of the generalization error of the selected network.

Non-linear model
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Fig. 2. Pruning run, in which the number of parameters (weights) are progressively removed
from the network. The test set has been split into two sets each holding 8 examples. The
two dashed lines represent the errors on the two test subsets. Selecting the “optimal” net
on either of the two test sets produce the two vertical dashed lines. The optimal nets have
34 and 37 parameters respectively.

6. Results

The main result of training the network is shown in fig. 1. In this case 48 of the
64 examples have been used for training and the remaining for testing. Whereas



Massive Weight Sharing: A Cure for Extremely Ill-posed Problems 9

the training is almost perfect with a residual error of 0.0103, the error on the test
set 1s 0.224. In spite of this large generalisation error, it is evident from the figure
that some generalisation is in fact obtained.

The optimal network selection process is depicted in fig. 2. In this figure the
number of parameters is reduced from the originally fully connected state with 148
parameters to increasingly more sparsely connected networks. To select a net from
the nested family of networks, we use the mentioned crosvalidation scheme in which
a set of 8 examples were randomly chosen as validation set.
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Fig. 3. Pruned net corresponding to minimal validation error. Excitatory connections are
marked with full, inhibitory with broken lines. Note that several input channels (principal
components) have been eliminated from the model, and that one hidden unit has been
discarded. It is interesting that the network emphasizes the eighth principal component
and puts less emphasis on the first seven components that carry much more variance. The
finding 1s in line with recent linear model based studies: it turns out that the variance
carried by the seven first component is in fact associated with intersubject variation,
hence, to be considered as “noise” when it comes to predict the frequency parameter of
the activation paradigm.

The optimal net obtained after pruning to minimum test error contains 34 pa-
rameters and is shown in fig. 3. In order to decorrelate the input images, they have
been resolved into principal components®, which corresponds to diagonalization of
the metric tensor. This preprocessing is a reversible linear operation which does
not change the basic problem. It is interesting, however, to note that the nonlinear
model emphasizes (by large weights) the eighth principal component. This is in
line with recent findings in'3 based on linear modeling. It was found that the first
principal components correspond to intersubject variation.
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Like in'® the variation of the PC’s are partitioned into intersubject, frequency
and residual components. This partitioning may be carried out for each PC,

2 _ 2 2 2
Etotal - Eintersubject + Efrequency + EI‘esidual (3)

where X2 = Zi\;sl 2?21(3/8,1‘ — Y »)? quantifies the total variation in the data
N, . . Lo
set, Eizntersubject = 521 (Ys « — Yy« «)? the intersubject variation, and Efzrequency =

Z;VL(Z‘/*J — Y. )? the variation induced by the frequency stimulus parameter. In
these expressions we have denoted averaged quantities with an asterisk.

Partitioning of Principal Component Variation
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Fig. 4. Partitioning of the variation for the first 13 principal components. The total
variation (x) is partitioned into intersubject variation (o), frequency variation (+), and
residual variation (*). For the first seven PC’s the variation is solely carried by intersubject
variation, while for the eight’th PC a sizeable fraction of the variation stems from the
frequency stimulus.

As seen in figure 4 the variation associated with the first seven PC’s is due to
intersubject variation, i.e., variation that stems from the difference in activation
patterns among different subjects. However, for the 8’th PC, which is important to
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the neural network, about 60% of the variation is accounted for by the frequency
stimulus.

To analyse the consistency of the signal space projection approach we have
computed the cross validation distribution of elevation angles as shown in the upper
panel of fig. 5. Most examples have very small angles, reflecting the high correlation
between voxel values. One training example seems to be an outlier and should
possibly be excluded from the training set. The elevation angles of the test set
(lower panel), however, are accepted as samples from the distribution obtained by
crossvalidation within the training set.
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Fig. 5. FElevation distribution for full set of images, computed by leave one out cross
validation. The ordinate is percent of maximum, the abscissa the angle in radians. On top
the distribution of elevations for the training set, at bottom the angles between the training
set and test images. The outlier in the training set corresponds (not unsurprisingly) to zero
frequency scans. All patterns in the test set are accepted as samples from the empirical
distribution derived by cross validation with the training set.

7. Conclusion

We have provided a general recipe for handling extremely ill-posed learning
problems. Whenever a learning system based on adaptive linear forms on a huge
input space 18 to be trained on a small training set, it is advantageous to reexpress
the linear forms in terms of the training set input vectors without loss of information.
The mechanism can be viewed as a particular construction for obtaining massive
weight sharing. In addition to a dramatic reduction of computational effort, the
scheme provides a natural mechanism for outlier rejection. In our example we
have shown how a network with of the order of 420,000 weights may be adapted
for analysis of PET images. By further pruning of the weight shared network
we rediscovered the fact that most of the variance in the data set is intersubject
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variation hence irrelevant for modeling of the activation paradigm.
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