
Measures for Measures

Supplementary Online Information

S. Lehmann1

A. D. Jackson
B. E. Lautrup

1Electronic Address: lehmann@nbi.dk



Contents

1 Data 2
1.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Bayesian Method 3
2.1 A Single Author Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Construction of Figure 1 in Main Paper . . . . . . . . . . . . . . . . . . . . 6
2.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Median 7

4 Explicit P (β|α) 8
4.1 First Initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Papers Per Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Hirsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



1 Data

1.1 Acquisition

This section provides a short description of the acquisition and processing of data from
the SPIRES (Stanford Public Information REtrieval System) data base. Ultimo 2003, the
database manager1 provided us with a text file containing the following information for
each paper in spires: Title, List of authors, Publication information, References, Sub-field
classification, and Keywords. We added this information to a relational data base (MySQL)
in order to create a network of authors and papers. The data used here was generated
by querying the resulting data base. Thus, only citations from within the data base are
counted. In order to ensure the validity of the data, we have also used an independent
route to generate the data; we employed the programming language Perl to extract the
relevant information from the main text file.

One main problem in processing this data is identifying authors uniquely, since the
same author can represent his name in may different ways (e.g. John James Smith, John
J. Smith, J. J. Smith, J. Smith, etc.). For the data shown, authors were identified by last
name and first two initials. Checks were performed using (i) last name and all initials
and (ii) last name and first initial only. These two cases represent approximate upper and
lower bounds on the number of unique authors in the data base. No significant changes
were found in either case.

1.2 Statistics

Our data set consists of all publications by “academic scientists”—defined as those with
25 or more published papers—in the theory subfield of SPIRES. The resulting data set
contains 274 470 papers written by 6 737 authors; this data set is highly homogeneous [1].
One possible description of the distribution of citations of papers is a double power-law
structure2. Specifically the probability that a paper will recieve n citations is approximately
proportional to (n + 1)−γ with γ = 1.10 for n ≤ 50 and γ = 2.78 for n > 50. These
features of the global distribution are also present in the conditional probabilities for sub-
groups of authors binned according to most measures of quality. In virtually all cases, the
conditional probabilities can also be described accurately by separate power-laws in each
of two regions with a relatively sharp transition between the regions. As one might expect,
authors with more citations are described by flatter distributions (i.e., smaller values of
γ) and a somewhat higher transition point. Supplementary Figure 1 displays the total
distribution of citations as a binned and normalized histogram.

1Travis C. Brooks from the SLAC Library.
2The double power-law description is only one of many possible parameterizations of the data; better fits

to the data can certainly be made, but any increase in the number of parameters demands a justification.
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Supplementary Figure 1: Logarithmically binned histogram of the citations counts of all
papers by authors with more than 25 publications in the theory subsection of SPIRES.
The data is normalized and the axes are logarithmic.

2 The Bayesian Method

We have binned the SPIRES authors and their citation records according to each of the
four tentative measures, m, described in the main paper. Studies performed on the first 25,
first 50 and all papers of authors with a given value of m indicate the absence of temporal
correlations in the citation distributions of individual authors. In practice, we bin authors
in deciles according to their value of m and papers logarithmically, due to the asymptotic
power law behavior noted above. We have confirmed that the results here are relatively
insensitive to binning effects.

We have constructed the prior distribution, p(α), that an author is in author bin α (in
the case of decile bins p(α) = 1/10 for all bins) and the conditional probability, P (i|α),
that a paper by an author in bin α will fall in citation bin i. For each bin α, the P (i|α)’s
are simply citation distributions analogous to the normalized histogram displayed in Sup-
plementary Figure 1, but constructed using only papers written by authors in bin α.

Now, we wish to calculate the probability, P ({ni}|α), that an author in bin α will have
a citation record with ni papers in each citation bin i. To do this, we assume3 that citations
for the M papers written by a given author with ni papers in citation bin i are obtained

3The argument here is based on the additional simplifying assumption that the distribution of total
papers per author is the same in all author bins. This assumption, which is readily relaxed, has no
significant effect on the results presented here.
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from M independent random draws on the appropriate distribution, P (i|α). Thus,

P ({ni}|α) = M !
∏

i

P (i|α)ni

(ni)!
. (1)

We have already noted the absence of large-scale temporal variations in P (i|α) during an
author’s scientific life. Other correlations could be present. For example, one particularly
well-cited paper could lead to an increased probability of high citations for its immediate
successor(s). While it is difficult to demonstrate the presence or absence of such correla-
tions, the results below provide a posteriori indications that such correlations, if present,
are not overly important. We can invert the probability P ({ni}|α) using Bayes’ Theorem
to obtain

P (α|{ni}) =
P ({ni}|α) p(α)

p({ni})

=
p(α)

∏
k P (k|α)nk∑

α′ p(α′)
∏

k′ P (k′|α′)nk′
. (2)

Note that the combinatoric factors cancel.
The quantity P (α|{ni}), which represents the probability that an author with citation

record {ni} belongs in quality bin (i.e., decile) α, is of primary interest. While any given
measure (e.g., the mean number of citations per paper) can be calculated immediately
from an author’s citation record {ni}, the calculated values of P (α|{ni}) provide more
detailed and reliable information. By exploiting differences between the various conditional
probabilities, P ({ni}|α), as a function of α, Supplementary Equation (2) determines the
appropriate decile value of m (or its most probable value) using all statistical information
in the data. By using the an author’s full citation record, the large fluctuations which are
inevitable in e.g. the number of citations of the author’s maximally cited paper are thereby
materially reduced. Further, by providing us with values of P (α|{ni}) for all α, we have a
statistically trustworthy gauge of whether the resulting uncertainties in the assigned value
of m are sufficiently small for it to be a reliable measure of author quality.

2.1 A Single Author Example

In short, Supplementary Equation (2) provides us with a measure of an author’s expected
lifetime quality along with information which allows us to assess the reliability of this
determination. The confidence with which we can assign a value of m approaches 100%
exponentially with the total number of published papers. As we shall see, it is also sensitive
to the quality measure chosen. To gain an understanding of P (α|{ni}), let us consider a
concrete example.

We will investigate the (real) citation record of author A with citation record Ω. Sup-
plementary Figure 2 shows the probabilities that A will lie in each of the deciles using
the four different measures defined in the main text. It is clear from the figure that there
are significant differences in the results obtained, both in the apparent accuracy of their
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Supplementary Figure 2: A single author example. We analyze the citation record of
author A with respect to four different measures. Author A has written a total of 88
papers. The mean number of citations per paper is 26, Hirsch’s h-index is 29 for this
author, the maximally cited paper has 187 citations, and papers have been published at
the average rate of 2.5 papers per year. The various panels give the probability that author
A belongs to each of the ten deciles based on the corresponding measure; the vertical arrow
shows the decile bin to which author A is assigned by direct calculation of each measure.

predictions and, more importantly, in the corresponding uncertainties. In all cases, large
uncertainties are due to the fact that the conditional probabilities, P (i|α) are largely in-
dependent of α. Such independence is to be expected in the case of the alphabetic binning
of authors, and the inability of the citation record to identify the first initial of author
A’s name is hardly surprising. The figure also suggests that, although this distribution
has a peak, the number of papers published per year is unable to determine to which bin
author A was assigned. The mean number of citations per paper provides an accurate
determination with a small uncertainty, thus the use of Supplementary Equation (2) has
compensated for the large fluctuations which might have been expected from the use of
mean citation rate as a measure of quality. Hirsch’s measure falls somewhere between the
best and worst choice of measures.
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2.2 Construction of Figure 1 in Main Paper

Measures of quality are of value only to the extent that they can be assigned to individ-
ual authors with high confidence. The methods described above allow us to determine
this confidence for any choice of measure in a manner which is value-free and completely
quantitative. In order to perform this evaluation, we repeat the calculations leading to
Supplementary Figure 2 for all authors in the SPIRES database. We calculate the prob-
ability, P (β|α), which is the probability, averaged over the authors in author bin α, that
the full citation record of an author initially assigned to bin α by the measure under con-
sideration was drawn at random on the distribution P (i|β), appropriate for author bin β.
Stated simply, P (β|α) is the probability that an author assigned to be in bin α is predicted
to lie in bin β. Thus, P (β|α) is the average

P (β|α) =
1

Nα

∑
{ni}∈α

P (β|{ni}), (3)

where Nα is the number of authors in bin α. The figure in the main paper is simply
the “stacked” results of this calculation, that is, for each measure, we plot the array of
probabilities

P (1|10) P (2|10) P (10|10)
...

...

P (1|2) P (2|2) P (10|2)
P (1|1) P (2|1) · · · P (10|1)

, (4)

where each probability P (β|α) is represented as a black square with area proportional to
the corresponding probability.

2.3 Scaling

In this section, we will consider the question of how many published papers are required
in order to make a reliable prediction of the lifetime quality measure for a given author.
(Here, we will consider only results using the mean citation rate as a measure.) Obviously,
if this number is sufficiently small, analysis along the lines presented here can provide
a practical tool of potential value in predicting long-term scientific accomplishment. In
order to address this question, we will look at how P (m|{ni}) scales as a function of the
the number of papers in each bin for an average author. Assume that an average author
belonging to bin α draws M papers at random from the distribution of P (n|α). The most
most probable number of papers in each citation bin will thus be given as ni = MP (i|α).
Inserting this result into Supplementary Equation (2) and discarding all fixed factors, we
find that

P (α|{ni}) ∼ p(α)

(∏
i

P (i|α)P (i|α)

)M

. (5)

For the same citation record, {ni}, a similar expression permits determination of the prob-
ability that this average author will be assigned to any bin. It is clear from Supplementary
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Equation (5) that the probability of assigning this average author to the wrong bin will
ultimately vanish exponentially with M . Given enough papers, the bin with the largest
probability will ultimately dominate. To correctly assign the most probable to outer deciles
1, 2, 3 and 8, 9, 10 at the 90% confidence level requires respectively M = 10, 40, 50, and
50, 50, 30 papers.

All quality measures have difficulty in making correct assignments to deciles 4–7. This
apparent difficulty is due to our decision to group authors by deciles. It can be understood
by assuming that the distribution of intrinsic author quality has a maximum at some non-
zero value. Such an assumption seems reasonable if we imagine that there is a natural
high-end cutoff and that academic appointment procedures filter out the least able. For
any such distribution, the probability density will be highest for authors in the vicinity of
this maximum. The binning of authors by deciles or percentiles then invites us to make
distinctions where no material quality difference exists. The results of the main figure in
the actual commentary remind us that we cannot do so. On the other hand, the probability
that an author can be correctly assigned to the bins 4, 5, 6, 7 collectively on the basis of 50
publications is higher than 90%.

3 The Median

Here, we show that the median of N = (2N + 1) random draws on any normalized
probability distribution, q(x), is normally distributed in the limit N →∞. To this end we
define the integral of q(x) as

Q(x) =

∫ x

q(x′)dx′ (6)

Evidently, Q(x) grows monotonically from 0 to 1 independent of q(x). The ‘median’ of this
sample is defined as that value of x such that (i) one draw has the value x, (ii) N draws
have a value less than or equal to x, and (iii) N draws have a value greater than or equal
to x. The probability that the median is at x is now given as

Px1/2
(x) =

(2N + 1)!

1!N !N !
q(x)Q(x)N [1−Q(x)]N . (7)

For large N , the maximum of Px1/2
(x) occurs at x = x1/2 where Q(x1/2) = 1/2. Expanding

the logarithm of Px1/2
(x) about its maximum value, we see that

Px1/2
(x) =

1√
2πσ2

exp[−
(x− x1/2)

2

2σ2
] , σ2 =

1

4N q(x1/2)2
. (8)

An identical argument applies for any percentile—not just the median. E.g., for construct-
ing the distribution of the 90th percentile, we would construct the the probability that 9N
draws have a value less than x, N draws have a value greater than x, and one draw has
the value of x. The distribution of any percentile, 0 ≤ z ≤ 1 measured with N random
draws on any distribution is a Gaussian with a maximum at some xz such that Q(xz) = z
and σ2 ∼ (N q(xz)

2)−1.
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4 Explicit P (β|α)

In this section we attach the actual probabilities behind the figure in the main text; the
numbers below correspond to the array in Supplementary Equation 4. As a visual help,
the diagonals are set in bold face.

4.1 First Initial

0.0761 0.2104 0.0686 0.0709 0.0819 0.1148 0.1010 0.0747 0.0801 0.1216
0.0839 0.1869 0.0710 0.0772 0.0866 0.1100 0.1107 0.0818 0.0876 0.1042
0.0820 0.1902 0.0700 0.0760 0.0857 0.1071 0.1147 0.0820 0.0868 0.1054
0.0851 0.1698 0.0715 0.0781 0.0927 0.1080 0.1248 0.0841 0.0887 0.0972
0.0790 0.2127 0.0695 0.0736 0.0847 0.1142 0.1113 0.0776 0.0817 0.0958
0.0814 0.1886 0.0713 0.0757 0.0887 0.1099 0.1144 0.0817 0.0857 0.1025
0.0814 0.1986 0.0680 0.0751 0.0851 0.1057 0.1154 0.0802 0.0858 0.1048
0.0791 0.2029 0.0719 0.0728 0.0831 0.1096 0.1052 0.0779 0.0826 0.1150
0.0776 0.2276 0.0703 0.0724 0.0822 0.1161 0.1028 0.0757 0.0800 0.0953
0.0841 0.1885 0.0712 0.0770 0.0857 0.1089 0.1129 0.0816 0.0876 0.1025


.

4.2 Papers Per Year

0.4493 0.0979 0.0347 0.0319 0.0462 0.0415 0.2412 0.0276 0.0169 0.0128
0.3591 0.1180 0.0452 0.0453 0.0637 0.0565 0.2204 0.0437 0.0273 0.0208
0.3134 0.1118 0.0484 0.0503 0.0674 0.0614 0.2388 0.0536 0.0320 0.0228
0.2321 0.1018 0.0518 0.0616 0.0839 0.0758 0.2547 0.0683 0.0407 0.0292
0.2321 0.1280 0.0672 0.0674 0.0861 0.0780 0.1994 0.0649 0.0436 0.0332
0.2130 0.1256 0.0679 0.0711 0.0891 0.0792 0.2051 0.0699 0.0455 0.0336
0.2024 0.1308 0.0768 0.0746 0.0885 0.0811 0.1855 0.0734 0.0492 0.0378
0.2747 0.1563 0.0805 0.0665 0.0750 0.0692 0.1335 0.0621 0.0452 0.0369
0.3077 0.1741 0.0852 0.0642 0.0699 0.0661 0.0946 0.0529 0.0465 0.0388
0.3406 0.1751 0.0841 0.0576 0.0590 0.0573 0.0774 0.0538 0.0482 0.0469


.

4.3 Hirsch

0.0000 0.0000 0.0010 0.0051 0.0124 0.0375 0.0805 0.1457 0.2298 0.4881
0.0000 0.0004 0.0105 0.0325 0.0593 0.1145 0.1703 0.2169 0.2205 0.1752
0.0000 0.0048 0.0503 0.0930 0.1292 0.1585 0.1671 0.1671 0.1498 0.0801
0.0003 0.0277 0.1150 0.1541 0.1789 0.1658 0.1294 0.1041 0.0811 0.0435
0.0046 0.0945 0.1787 0.1747 0.1745 0.1413 0.1011 0.0704 0.0459 0.0142
0.0248 0.2102 0.2253 0.1682 0.1499 0.0957 0.0605 0.0405 0.0190 0.0059
0.0711 0.3251 0.2157 0.1322 0.1118 0.0665 0.0356 0.0211 0.0181 0.0027
0.2243 0.4026 0.1656 0.0768 0.0592 0.0352 0.0195 0.0101 0.0038 0.0029
0.5417 0.3180 0.0761 0.0315 0.0196 0.0071 0.0030 0.0030 0.0000 0.0000
0.8844 0.0981 0.0104 0.0039 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000


.

8



4.4 Mean

0.0000 0.0000 0.0000 0.0005 0.0000 0.0039 0.0049 0.0253 0.2087 0.7567
0.0000 0.0000 0.0006 0.0081 0.0038 0.0337 0.0493 0.2089 0.6062 0.0895
0.0000 0.0000 0.0015 0.0157 0.0185 0.0747 0.2037 0.4388 0.2434 0.0036
0.0000 0.0000 0.0104 0.0224 0.0563 0.2039 0.4086 0.2566 0.0414 0.0003
0.0000 0.0005 0.0257 0.0656 0.1873 0.3843 0.2648 0.0654 0.0063 0.0000
0.0000 0.0026 0.0619 0.1915 0.4041 0.2600 0.0697 0.0096 0.0005 0.0000
0.0000 0.0322 0.2127 0.4104 0.2706 0.0646 0.0086 0.0007 0.0000 0.0000
0.0028 0.1826 0.5034 0.2542 0.0505 0.0060 0.0004 0.0000 0.0000 0.0000
0.1037 0.6462 0.2212 0.0266 0.0022 0.0001 0.0000 0.0000 0.0000 0.0000
0.8044 0.1882 0.0071 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


.
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