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Abstract� We introduce the concept of generalization for models of func�
tional neuroactivation� and show how it is a�ected by the number� N � of
neuroimaging scans available By plotting generalization as a function
of N �ie a �learning curve�� we demonstrate that while simple� lin�
ear models may generalize better for small N �s� more �exible� low�biased
nonlinear models� based on arti�cial neural networks �ANN�s�� generalize
better for larger N �s We demonstrate that for sets of scans of two simple
motor tasks�one set acquired with �O���water using PET� and the other
using fMRI�practical N �s exist for which �generalization crossover� oc�
curs This observation supports the application of highly �exible� ANN
models to su�ciently large functional activation datasets
Keywords� Multivariate brain modeling� ill�posed learning� generaliza�
tion� learning curves

� Introduction

Datasets that result from functional activation studies of the living� human brain
typically consist of two corresponding sets of observables� themicroscopic and the



macroscopic ����� The brains haemodynamic response� re	ecting the microscopic
neuronal 
ring pattern� is measured by modern three�dimensional �D� imaging
techniques such as positron emission tomography �PET� and functional magnetic
resonance imaging �fMRI� by integrating in space and time ����� Along with the
resulting set of D image volumes �scans� a corresponding set of macroscopic
descriptors governs the overall conditions of the experiment� This set can include
experimentally controlled factors� such as paradigm labels and variables� and
physiological and demographic measures� such as age and heart�rate� The micro�
and macroscopic observables are generally both sets of multivariate� stochastic
variables� Arranging the microscopic variables �the D image volumes� in vectors
x and the macroscopic variables in vectors g a functional activation dataset D
consisting of N observations can be written as

D � f�xj �gj� j j � �� � � � � Ng � ���

Generally� we will assume the observations to be random� independent samples of
an underlying stationary process with distribution P�x�g�� As we shall see this
distribution plays a central role in the analysis of functional activation datasets
�����

In the following we discuss the so�called �curse of dimensionality� that re�
sults from the extremely ill�posed nature of typical functional activation datasets
������ The problem is discussed in terms of probability density estimation and
we brie	y mention ways to remedy the inevitable over�parameterization that
otherwise occurs in modeling procedures based on such datasets ����� The main
point we hope to convey is how model generalization�as studied intensively in
other 
elds dealing with probability density estimation and multivariate modeling
������������applies to functional neuroimaging ����� and speci
cally how it is
a�ected by the number� N � of available observations�

� Models of Functional Activation Datasets

In terms of x and g the analysis of functional activation datasets can be phrased
as the estimation �of properties� of P�x�g�� For instance� we can estimate the
conditional mean� Efxjgg� using multivariate linear models as in ���� thus e�ect�
ively modeling the expected scan from a set of macroscopic variables� Or� we
can estimate the alternative conditional mean Efgjxg� using multivariate linear
models as in ����� e�ectively modeling the expected value of a set of macroscopic
variables from the scan��

In general� we employ parameterized models of the properties we wish to
estimate� In this work we focus on models that estimate Efgjxg� Being a function
of x we denote these models f��x�� explicitly indicating the dependency on the set
of parameters �� Parameter values are estimated using some or all of the available
data� We call such a set of data used for parameter estimation the training set�

Dtrain � f�xj �gj� j j � �� � � � � Ntraing � ���

� In fact� it can be shown that the two linear models are analogous and simple relations
between the parameters exist



For a given set of parameters model performance is quanti
ed using the cost

function� c�x�g� ��� which is often derived from maximum likelihood �ML� argu�
ments ���������� Parameter values are estimated by optimizing the cost function
based on the observations in the training set �we say that the model is trained�
hence the name�� Averaged over the training set this evaluates to

C�Dtrain� �� �

ZZ
c�x�g� ��Ptrain�x�g� dx dg � ��

By using the empirical density estimate Ptrain�x�g� � �

Ntrain

PNtrain

j�� ��x �
xj �g � gj� we get the so�called training error

C�Dtrain� �� �
�

Ntrain

NtrainX
j��

c�xj �gj � ��� �xj �gj� � Dtrain � ���

The choice of cost function will depend on the noise model and potential con�
straints we impose on the model outputs �e�g� to make them interpretable as
probabilities�� For more details on these issues see ���������

Equipped with a training set� a model� and a cost function we are ready to
gain knowledge about P�x�g� and� hopefully� underlying information processing
relationships in the human brain� However� several important additional issues
must be considered before attempting to build practical models� Rather than
using ��� to model Efgjxg from the observations directly we can reduce the
computational burden dramatically by taking the extremely ill�posed nature of
typical functional activation datasets into account�

��� Ill�posed Datasets

While we often include only a few descriptors in the macroscopic variables g
making them low�dimensional� the microscopic variables x that represent the
scans are often high�dimensional� Despite preprocessing that� among other things�
mask out voxels outside the brain more than ����� voxels often remain� Using I
to denote the space in which all possible observations fall �i�e�� the input space�
we have dim�I� � ���� The space spanned by the actual observations in the
dataset is called signal space and denoted S� Often no more than a few hundred
observations are available� so dim�S� � ����

Typically dim�S�� dim�I�� making S a small subspace of I� This is exactly
what characterizes extremely ill�posed datasets� In Fig� � an ill�posed situation
is illustrated� Input space is D Euclidean space indicated by the dashed vectors�
With only two observations in the dataset represented by the solid vectors� signal
space is a �D subspace� i�e� a plane� The dataset does not contain information
about the parts of I that are orthogonal to S�

Because the dimension of S is low we have a correspondingly low number of
degrees of freedom available in any subsequent modeling� and naive estimation
based directly on the observation pairs �x�g� will result in strong linear relations
between the estimated parameters� the original basis in which observations in
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Fig� �� Illustration of an ill�posed dataset With input space� I� being three�dimensional
�represented by the dashed vectors� the signal space� S� which is the space spanned by
the two observations in the dataset �represented by the solid vectors�� is the plane
indicated in gray The dataset contains no information about the parts of input space
that are orthogonal to signal space because dim�S� � dim�I�

input space are represented is a poor choice when it comes to representing ob�
servations e�ciently in signal space� We can easily construct other� more e�cient
bases� however� that reduce the dimensionality of the representation without loss
of information �������� The only requirement is that the basis chosen spans signal
space� One particularly choice of basis is to use the observations in the dataset
themselves� Even�though e�cient in reducing an extremely ill�posed problem to
an only marginally ill�posed one bases that reveal more about the signal struc�
ture are available� In particular� a singular value decomposition �SVD� basis
���������� has been shown to reveal an interesting subspace structure ����������
In the following v will denote the projection of a scan x onto an e�cient basis
that spans signal space� for more details see �����

��� Model Flexibility and Bias

Having reduced the extremely ill�posed dataset to a marginally ill�posed one
where the dimension of each observation� v� equals the number of observations�
it is now part of the modeling task to impose further constraints in order to avoid
over�
tting� Di�erent model families approach this in various ways� by limiting
model 	exibility and thus the e�ective dimensionality of the parameterization to
match the available degrees of freedom�

In the following we focus on models for classi
cation� Assuming the macro�
scopic variables to be univariate labels we seek to build models that optimally



classify the microscopic variables�� x� into the correct classes� In other words�
we seek a decision boundary in signal space that allows the observations to be
correctly classi
ed according to their macroscopic labels� More speci
cally we
will apply two model families that di�er in model 	exibility�

� Fishers Linear Discriminant
Fishers Linear Discriminant �FLD� is a family of linear classi
er that are
based on a cost function that measures the di�erence between class means
relative to the within class variance ������� The term linear refers to the fact
that the models are linear in the parameters which makes parameter estima�
tion straight forward� However� this relatively high bias limits the 	exibility
of the relationships �decision boundaries� that the models can implement�

� Arti�cial neural network �ANN	 classi�ers
Arti
cial neural networks is a family of parameter e�cient models that deal
with the curse of dimensionality by employing nonlinearities ������ The mod�
els are nonlinear in the parameters in contrast to FLD� This complicates
parameter estimation but makes the models less biased and allow them to
implement a much more 	exible and wider range of relationships �decision
boundaries� ��������

� Generalization

Although cost functions allow us to quantify model performance the training
error in �� is the average over the speci�c and limited training set only� If
the distribution of observations in this set� Ptrain�x�g�� does not match the true
distribution� P�x�g�� su�ciently well the cost function value will not re	ect model
performance correctly� Rather� as training sets are often small we should use
generalization error�

G��train� �

ZZ
c�x�g� �train�P�x�g� dx dg � ���

as our measure of model quality� Unfortunately this requires complete knowledge
of P�x�g� which� of course� we do not have� Instead we can estimate generalization
either analytically ������ or empirically ����� The latter is often called test error

bG��train� � C�Dtest� �train� ���

�
�

Ntest

NtestX
j��

c�xj �gj � �train�� �xj �gj� � Dtest ���

and evaluated using an independent set of observations organized in a test set

Dtest � f�xj �gj� j j � �� � � � � Ntestg � ���

� In practice we use v of course� thus e�ciently representing the scans using a basis
that spans signal space



In ��� we have indicated how generalization error depends on the training set
via the estimated parameters �train� To eliminate this dependency we average
over training sets of size Ntrain to yield the expected generalization error

ENtrain
�G� �

Z
G��train�P�DNtrain

� dDNtrain
� ���

which can be estimated empirically by using the test error in ��� to estimate
G��train�� Clearly� using a set of the available observations to independently
estimate generalization reduces the number of observations left for training� The
optimal split of the available data into training� and test sets constitutes a non�
trivial problem that has been studied in the context of ANN�s and statistical
re�sampling techniques ���� In the remainder of this paper we will 
x the size
of the test set as well as the observations therein to allow measures of model
performance that are unbiased�or at least comparable between di�erent model
families�


�� Learning Curves and Generalization Crossover

Using generalization we are now ready to investigate how the number of observa�
tions in the training set� Ntrain� a�ects model performance� We hypothesize that�
as Ntrain increases� generalization error will decrease� This downwards slope of
the so�called learning curve is caused by the improved estimates of P�x�g� �on
which the models are based� that increasingly larger training sets provide�

For a given model family the learning curve will eventually 	atten out as ad�
ditional observations no longer improve model performance due to limitations in
the models themselves� This naturally leads to the further hypothesis that learn�
ing curves look di�erent for di�erent model families� Models that are very 	ex�
ible typically need many examples to obtain stable parameter estimates� These
models will in return generalize very well� In contrast� the implicit constraints
in highly biased models enable them to obtain stable parameter estimates from
fewer observations� However� they may not generalize as well as their more 	exible
counterparts� Thus� while generalization error is highest for very 	exible models
for small training sets� it decreases to a lower level than for highly biased� less
	exible models as Ntrain increases� This means that a generalization crossover

occurs at which point the data support the use of the more 	exible models� The
situation is illustrated in Fig� ��

� Methods

To estimate learning curves data from two functional activation studies� both
involving simple motor tasks� was used�

��� �O��Water PET Scanning

A set of � subjects were each scanned � times using a Siemens�ECAT ��B
PET scanner while alternately resting and performing a simple 
nger opposition
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Fig� �� Model generalization as a function of number of observations� Ntrain� used to
estimate model parameters Generalization error decreases with increasing Ntrain for
both highly �exible and more biased models The decrease is more rapid for the latter�
whereas the former reaches a lower level for large values of Ntrain At the point of
generalization crossover enough data is available to support the use of more �exible�
low�biased models

task with their left hand ����� For each subject four scans were acquired in each
of the two states yielding a total of ��� scans�

Before scanning �O���water was automatically injected in the subjects right
arm leaving the left arm free to perform the task� With the eyes covered by a
patch an auditory timing signal was delivered by insert earphones�

For baseline �rest� scans� subjects were instructed to lie still and remain
awake� they received no stimulation� For motor activation scans� the subjects left
arm was positioned perpendicular to the scanning couch� At the start of the injec�
tion� the timing signal was initiated and the 
nger�thumb opposition task contin�
ued for �� s� The 
nger�thumb opposition task consisted of sequential opposition
of the thumb and successive digits� and back again ��� � �� �� �� � �� � �� � � �� at a
rate of � Hz�

PET scanning commenced when the radioactive material reached the brain�
typically ����� s after injection� and data acquisition continued for �� s� Each
scanning session consisted of eight �� s PET scans separated by �� min rest
periods to allow for O�� decay� for a total experimental time of approximately
�� min� The 
rst� third� 
fth� and seventh scans were acquired in the baseline
state� and the second� fourth� sixth� and eighth scans were acquired in the activ�



ated state� Scans corrected for randoms� dead�time� and attenuation� but not for
scatter� were reconstructed using D 
ltered back�projection�

��� fMRI Scanning

A single subject performing a left�handed 
nger�to�thumb opposition task was
scanned during eight ��� s runs� In each run �� baseline� �� activation� and
�� baseline whole brain echo planar scans were acquired ����s scan� with an
interslice distance of � mm and an in plane voxel resolution of �� � �� mm��
This yielded a total of ��� scans� During activation the task was timed with an
auditory signal at a rate of � Hz�

��
 Scan Alignment and Preprocessing

The PET and fMRI scans were intra�subject aligned using AIR �Automated
Image Registration� ���� and only the PET scans were then stereo�tactically
normalized to a simulated PET reference volume in Talairach space ���� using the
�� parameter linear transformation described in ���� �see ���� for more details��
This yielded scans with �� slices� inter�slice distance of �� mm and in plane
voxel resolution of ��� �� mm�� After masking out voxels outside the brain an
SVD basis was computed based on the entire� set of scans�

��� Modeling

After normalizing the singular vectors� v� to zero mean and a standard deviation
of one� a 
xed test set was randomly selected ���� for the PET data and ��� for
the fMRI data�� The remaining observations were utilized to yield training sets of
increasing size� A number of training sets of each size ��� for the PET data and ��
for the fMRI data� were randomly sampled with replacement� from the singular
vectors� For each of the resulting training sets a linear �FLD� and a nonlinear
�ANN� classi
er were estimated� Model performance was then assessed using
the 
xed test set� The linear and nonlinear classi
ers are based on di�erent cost
functions� so to allow a quantitative comparison generalization was measured as
the mean misclassi
cation on the independent test set�

� Results

Figure  depicts the learning curves for the linear and nonlinear classi
ers on
the PET data� The two curves are slightly o�set horizontally to better show the

� Basing models on an SVD of the entire set of observation limits results from gen�
eralization measures to the speci�c set of subjects in the PET case� and the speci�c
subject in the fMRI case Thus� generalization error does not implicate the extent to
which models generalize to subjects other than those included in the datasets

� Estimators based on sampling with replacement �also known as bootstrapping�� where
the same observation may appear more than once in the same sample� are asymptot�
ically central �	��however counter�intuitive this may seem



error�bars that indicate one standard deviation of the mean for each training
set size� As hypothesized both learning curves decrease� The nonlinear classi
er
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Fig� �� For an �O���water PET study of a simple �nger opposition task model general�
ization �measured as the mean misclassi�cation on an independent test set� is plotted
as a function of number of observations� Ntrain� used to estimate model parameters
Generalization error decreases with increasing Ntrain for the linear as well as the non�
linear classi�ers However� generalization error decreases more rapidly and settles at
a higher level for the linear classi�er than for its nonlinear counterpart Thus� for this
task linear classi�ers seem optimal for small datasets As more observations become
available we are better o� using the more �exible nonlinear classi�ers

seems to generalize worse for small training sets but perform relatively better as
Ntrain increases� Indeed� a generalization crossover occurs for training sets with
around �� examples� and as Ntrain increases further generalization error for the
nonlinear classi
er settles at a lower level than that of its linear counterpart�

For the fMRI dataset Fig� � shows a similar picture� Again the learning curves
for the linear and nonlinear classi
ers cross as the number of observations in the
training set is increased� Thus� for small training sets we can not reject the linear
model�

� Discussion

We have introduced a general framework for the analysis of functional activation
datasets� In this framework the extremely ill�posed nature of typical datasets
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Fig� �� For an fMRI study of a left�handed �nger�to�thumb opposition task model
generalization �measured as the mean misclassi�cation on an independent test set�
is plotted as a function of number of observations� Ntrain� used to estimate model
parameters Generalization error decreases with increasing Ntrain for the linear as well
as the nonlinear classi�ers However� generalization error decreases more rapidly and
settles at a higher level for the linear classi�er than for its nonlinear counterpart Again�
the linear classi�ers can not be rejected for small datasets As more observations become
available we are better o� using the more �exible nonlinear classi�ers

imposes an immense computational burden on any modeling procedures� We have
shown how a simple coordinate transform reduces data representation without
loss of information� thus minimizing the computational load�

The importance of not measuring model performance on the same set of
data used to estimate the model parameters has been stressed� and we have
sketched how independent test sets provide empirical estimates of generalization�
We have hypothesized how generalization error decreases as more observations
become available for parameter estimation� Decreasing learning curves satisfying
our hypothesis have been demonstrated on two functional activation datasets of
PET and fMRI scans of subjects performing simple motor tasks�

By employing model families that di�er in 	exibility we have further shown
the e�ect of model 	exibility on the slope of the learning curves� For the studied
tasks we have identi
ed generalization crossovers� at which point enough ob�
servations are available to support the use of a more 	exible� nonlinear model�
We believe this to have implications for the future of modeling in functional
neuroimaging� as more and more data become available the support for more
sophisticated and 	exible models increase� While introducing problems of their
own �by e�g� not being linear in their parameters�� these models can potentially



lead to increased knowledge of the systems that govern information processing
in the living� human brain�
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