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Abstract. We introduce the concept of generalization for models of func-
tional neuroactivation, and show how it is affected by the number, N, of
neuroimaging scans available. By plotting generalization as a function
of N (i.e. a “learning curve”) we demonstrate that while simple, lin-
ear models may generalize better for small N’s, more flexible, low-biased
nonlinear models, based on artificial neural networks (ANN’s), generalize
better for larger N’s. We demonstrate that for sets of scans of two simple
motor tasks—one set acquired with [O'®]water using PET, and the other
using fMRI—practical N’s exist for which “generalization crossover” oc-
curs. This observation supports the application of highly flexible, ANN
models to sufficiently large functional activation datasets.
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1 Introduction

Datasets that result from functional activation studies of the living, human brain
typically consist of two corresponding sets of observables, the microscopic and the



macroscopic [26]. The brains haemodynamic response, reflecting the microscopic
neuronal firing pattern, is measured by modern three-dimensional (3D) imaging
techniques such as positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI) by integrating in space and time [21]. Along with the
resulting set of 3D image volumes (scans) a corresponding set of macroscopic
descriptors governs the overall conditions of the experiment. This set can include
experimentally controlled factors, such as paradigm labels and variables, and
physiological and demographic measures, such as age and heart-rate. The micro-
and macroscopic observables are generally both sets of multivariate, stochastic
variables. Arranging the microscopic variables (the 3D image volumes) in vectors
x and the macroscopic variables in vectors g a functional activation dataset D
consisting of N observations can be written as

D={(xj,) |j=1,....N} . (1)

Generally, we will assume the observations to be random, independent, samples of
an underlying stationary process with distribution P(x,g). As we shall see this
distribution plays a central role in the analysis of functional activation datasets
[18].

In the following we discuss the so-called “curse of dimensionality” that re-
sults from the extremely ill-posed nature of typical functional activation datasets
[6,23]. The problem is discussed in terms of probability density estimation and
we briefly mention ways to remedy the inevitable over-parameterization that
otherwise occurs in modeling procedures based on such datasets [12]. The main
point we hope to convey is how model generalization—as studied intensively in
other fields dealing with probability density estimation and multivariate modeling
[8,13,17,20]—applies to functional neuroimaging [18], and specifically how it is
affected by the number, N, of available observations.

2 Models of Functional Activation Datasets

In terms of x and g the analysis of functional activation datasets can be phrased
as the estimation (of properties) of P(x,g). For instance, we can estimate the
conditional mean, E{x|g}, using multivariate linear models as in [7], thus effect-
ively modeling the expected scan from a set of macroscopic variables. Or, we
can estimate the alternative conditional mean E{g|x}, using multivariate linear
models as in [18], effectively modeling the expected value of a set of macroscopic
variables from the scan!.

In general, we employ parameterized models of the properties we wish to
estimate. In this work we focus on models that estimate E{g|x}. Being a function
of x we denote these models fp(x), explicitly indicating the dependency on the set
of parameters 6. Parameter values are estimated using some or all of the available
data. We call such a set of data used for parameter estimation the training set,

Dirain = {(xj,85) |7 =1,..., Ntrain} - (2)

! In fact, it can be shown that the two linear models are analogous and simple relations
between the parameters exist.



For a given set of parameters model performance is quantified using the cost
function, c(x,g,6), which is often derived from maximum likelihood (ML) argu-
ments [4,10,14]. Parameter values are estimated by optimizing the cost function
based on the observations in the training set (we say that the model is trained,
hence the name). Averaged over the training set this evaluates to

C(Dtrmﬁnag) = // C(Xagaa)Ptrain(Xag) dx dg . (3)
By using the empirical density estimate Pipgin(x,8) = N”lm-n Z;.V:“i“"" o(x —

Xj,8 — 8;) we get the so-called training error

Nirain
1
C(Dtraina 0) = - Z C(Xj7 g5 0)7 (Xja g]) € Dtrain - (4)
Ntrazn j=1

The choice of cost function will depend on the noise model and potential con-
straints we impose on the model outputs (e.g. to make them interpretable as
probabilities). For more details on these issues see [3,10,14].

Equipped with a training set, a model, and a cost function we are ready to
gain knowledge about P(x,g) and, hopefully, underlying information processing
relationships in the human brain. However, several important additional issues
must be considered before attempting to build practical models. Rather than
using (4) to model E{g|x} from the observations directly we can reduce the
computational burden dramatically by taking the extremely ill-posed nature of
typical functional activation datasets into account.

2.1 TIll-posed Datasets

While we often include only a few descriptors in the macroscopic variables g
making them low-dimensional, the microscopic variables x that represent the
scans are often high-dimensional. Despite preprocessing that, among other things,
mask out voxels outside the brain more than 40000 voxels often remain. Using 7
to denote the space in which all possible observations fall (i.e., the input space)
we have dim(Z) ~ 10*. The space spanned by the actual observations in the
dataset is called signal space and denoted S. Often no more than a few hundred
observations are available, so dim(S) ~ 102.

Typically dim(S) <« dim(Z), making S a small subspace of Z. This is exactly
what characterizes extremely ill-posed datasets. In Fig. 1 an ill-posed situation
is illustrated. Input space is 3D Euclidean space indicated by the dashed vectors.
With only two observations in the dataset represented by the solid vectors, signal
space is a 2D subspace, i.e. a plane. The dataset does not contain information
about the parts of Z that are orthogonal to S.

Because the dimension of S is low we have a correspondingly low number of
degrees of freedom available in any subsequent modeling, and naive estimation
based directly on the observation pairs (x, g) will result in strong linear relations
between the estimated parameters; the original basis in which observations in
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Fig. 1. Illustration of an ill-posed dataset. With input space, Z, being three-dimensional
(represented by the dashed vectors) the signal space, S, which is the space spanned by
the two observations in the dataset (represented by the solid vectors), is the plane
indicated in gray. The dataset contains no information about the parts of input space
that are orthogonal to signal space because dim(S) < dim(Z).

input space are represented is a poor choice when it comes to representing ob-
servations efficiently in signal space. We can easily construct other, more efficient
bases, however, that reduce the dimensionality of the representation without loss
of information [12,19]. The only requirement is that the basis chosen spans signal
space. One particularly choice of basis is to use the observations in the dataset
themselves. Even-though efficient in reducing an extremely ill-posed problem to
an only marginally ill-posed one bases that reveal more about the signal struc-
ture are available. In particular, a singular value decomposition (SVD) basis
[11,15,16] has been shown to reveal an interesting subspace structure [12,22,23].
In the following v will denote the projection of a scan x onto an efficient basis
that spans signal space; for more details see [18].

2.2 Model Flexibility and Bias

Having reduced the extremely ill-posed dataset to a marginally ill-posed one
where the dimension of each observation, v, equals the number of observations,
it is now part of the modeling task to impose further constraints in order to avoid
over-fitting. Different model families approach this in various ways, by limiting
model flexibility and thus the effective dimensionality of the parameterization to
match the available degrees of freedom.

In the following we focus on models for classification. Assuming the macro-
scopic variables to be univariate labels we seek to build models that optimally



classify the microscopic variables?, x, into the correct classes. In other words,
we seek a decision boundary in signal space that allows the observations to be
correctly classified according to their macroscopic labels. More specifically we
will apply two model families that differ in model flexibility:

— Fishers Linear Discriminant
Fishers Linear Discriminant (FLD) is a family of linear classifier that are
based on a cost function that measures the difference between class means
relative to the within class variance [4,14]. The term linear refers to the fact
that the models are linear in the parameters which makes parameter estima-
tion straight forward. However, this relatively high bias limits the flexibility
of the relationships (decision boundaries) that the models can implement.

— Artificial neural network (ANN) classifiers
Artificial neural networks is a family of parameter efficient models that deal
with the curse of dimensionality by employing nonlinearities [2,9]. The mod-
els are nonlinear in the parameters in contrast to FLD. This complicates
parameter estimation but makes the models less biased and allow them to
implement a much more flexible and wider range of relationships (decision
boundaries) [10,24].

3 Generalization

Although cost functions allow us to quantify model performance the training
error in (3) is the average over the specific and limited training set only. If
the distribution of observations in this set, Pt.qin(X, &), does not match the true
distribution, P(x, g), sufficiently well the cost function value will not reflect model
performance correctly. Rather, as training sets are often small we should use
generalization error,

G(etrain) = // C(Xagaatrain)P(xag) dx dg . (5)

as our measure of model quality. Unfortunately this requires complete knowledge
of P(x, g) which, of course, we do not have. Instead we can estimate generalization
either analytically [1,20] or empirically [24]. The latter is often called test error

~

G(etrain) = C(Dtest,gtrmn) (6)
1 Niest
N Ntest ];1 C(Xj’ &i> etrain), (Xj’ gJ) € Dtest (7)

and evaluated using an independent set of observations organized in a test set

Diest = {(xj,8;) |7 =1,--, Niest} - (8)

2 In practice we use v of course, thus efficiently representing the scans using a basis
that spans signal space.



In (5) we have indicated how generalization error depends on the training set
via the estimated parameters 6;,,;,- To eliminate this dependency we average
over training sets of size N¢pqin to yield the expected generalization error

Eny,., (G) = / G (Berain)P (D) dDir (9)

which can be estimated empirically by using the test error in (7) to estimate
G(0train)- Clearly, using a set of the available observations to independently
estimate generalization reduces the number of observations left for training. The
optimal split of the available data into training- and test sets constitutes a non-
trivial problem that has been studied in the context of ANN’s and statistical
re-sampling techniques [5]. In the remainder of this paper we will fix the size
of the test set as well as the observations therein to allow measures of model
performance that are unbiased—or at least comparable between different model
families.

3.1 Learning Curves and Generalization Crossover

Using generalization we are now ready to investigate how the number of observa-
tions in the training set, Ni,qin, affects model performance. We hypothesize that,
as Niprqin increases, generalization error will decrease. This downwards slope of
the so-called learning curve is caused by the improved estimates of P(x,g) (on
which the models are based) that increasingly larger training sets provide.

For a given model family the learning curve will eventually flatten out as ad-
ditional observations no longer improve model performance due to limitations in
the models themselves. This naturally leads to the further hypothesis that learn-
ing curves look different for different model families. Models that are very flex-
ible typically need many examples to obtain stable parameter estimates. These
models will in return generalize very well. In contrast, the implicit constraints
in highly biased models enable them to obtain stable parameter estimates from
fewer observations. However, they may not generalize as well as their more flexible
counterparts. Thus, while generalization error is highest for very flexible models
for small training sets, it decreases to a lower level than for highly biased, less
flexible models as Nyyqi, increases. This means that a generalization crossover
occurs at which point the data support the use of the more flexible models. The
situation is illustrated in Fig. 2.

4 Methods

To estimate learning curves data from two functional activation studies, both
involving simple motor tasks, was used.

4.1 [O'5|Water PET Scanning

A set of 30 subjects were each scanned 8 times using a Siemens-ECAT 953B
PET scanner while alternately resting and performing a simple finger opposition
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Fig. 2. Model generalization as a function of number of observations, N¢rqin, used to
estimate model parameters. Generalization error decreases with increasing Nipqin for
both highly flexible and more biased models. The decrease is more rapid for the latter,
whereas the former reaches a lower level for large values of Nipgin. At the point of
generalization crossover enough data is available to support the use of more flexible,
low-biased models.

task with their left hand [22]. For each subject four scans were acquired in each
of the two states yielding a total of 240 scans.

Before scanning [O!%]water was automatically injected in the subjects right
arm leaving the left arm free to perform the task. With the eyes covered by a
patch an auditory timing signal was delivered by insert earphones.

For baseline (rest) scans, subjects were instructed to lie still and remain
awake; they received no stimulation. For motor activation scans, the subjects left
arm was positioned perpendicular to the scanning couch. At the start of the injec-
tion, the timing signal was initiated and the finger-thumb opposition task contin-
ued for 60 s. The finger-thumb opposition task consisted of sequential opposition
of the thumb and successive digits, and back again (2,3,4,5,4,3,2,3,4,...) at a
rate of 1 Hz.

PET scanning commenced when the radioactive material reached the brain,
typically 10-20 s after injection, and data acquisition continued for 90 s. Each
scanning session consisted of eight 90 s PET scans separated by 10 min rest
periods to allow for O'® decay, for a total experimental time of approximately
90 min. The first, third, fifth, and seventh scans were acquired in the baseline
state, and the second, fourth, sixth, and eighth scans were acquired in the activ-



ated state. Scans corrected for randoms, dead-time, and attenuation, but not for
scatter, were reconstructed using 3D filtered back-projection.

4.2 fMRI Scanning

A single subject performing a left-handed finger-to-thumb opposition task was
scanned during eight 180 s runs. In each run 24 baseline, 24 activation, and
24 baseline whole brain echo planar scans were acquired (2.5s/scan) with an
interslice distance of 8 mm and an in plane voxel resolution of 3.1 x 3.1 mm?.
This yielded a total of 576 scans. During activation the task was timed with an

auditory signal at a rate of 1 Hz.

4.3 Scan Alignment and Preprocessing

The PET and fMRI scans were intra-subject aligned using AIR (Automated
Image Registration) [27] and only the PET scans were then stereo-tactically
normalized to a simulated PET reference volume in Talairach space [25] using the
12 parameter linear transformation described in [28] (see [22] for more details).
This yielded scans with 48 slices, inter-slice distance of 3.4 mm and in plane
voxel resolution of 3.1 x 3.1 mm?. After masking out voxels outside the brain an
SVD basis was computed based on the entire® set of scans.

4.4 Modeling

After normalizing the singular vectors, v, to zero mean and a standard deviation
of one, a fixed test set was randomly selected (100 for the PET data and 200 for
the fMRI data). The remaining observations were utilized to yield training sets of
increasing size. A number of training sets of each size (25 for the PET data and 20
for the fMRI data) were randomly sampled with replacement? from the singular
vectors. For each of the resulting training sets a linear (FLD) and a nonlinear
(ANN) classifier were estimated. Model performance was then assessed using
the fixed test set. The linear and nonlinear classifiers are based on different cost
functions, so to allow a quantitative comparison generalization was measured as
the mean misclassification on the independent test set.

5 Results

Figure 3 depicts the learning curves for the linear and nonlinear classifiers on
the PET data. The two curves are slightly offset horizontally to better show the

% Basing models on an SVD of the entire set of observation limits results from gen-
eralization measures to the specific set of subjects in the PET case, and the specific
subject in the fMRI case. Thus, generalization error does not implicate the extent to
which models generalize to subjects other than those included in the datasets.

* Estimators based on sampling with replacement (also known as bootstrapping), where
the same observation may appear more than once in the same sample, are asymptot-
ically central [5]—however counter-intuitive this may seem.



error-bars that indicate one standard deviation of the mean for each training
set size. As hypothesized both learning curves decrease. The nonlinear classifier
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Fig. 3. For an [0'%]water PET study of a simple finger opposition task model general-
ization (measured as the mean misclassification on an independent test set) is plotted
as a function of number of observations, Ni,qin, used to estimate model parameters.
Generalization error decreases with increasing Nirqin for the linear as well as the non-
linear classifiers. However, generalization error decreases more rapidly and settles at
a higher level for the linear classifier than for its nonlinear counterpart. Thus, for this
task linear classifiers seem optimal for small datasets. As more observations become
available we are better off using the more flexible nonlinear classifiers.

seems to generalize worse for small training sets but perform relatively better as
Nirain increases. Indeed, a generalization crossover occurs for training sets with
around 60 examples, and as Ni.q;n increases further generalization error for the
nonlinear classifier settles at a lower level than that of its linear counterpart.

For the fMRI dataset Fig. 4 shows a similar picture. Again the learning curves
for the linear and nonlinear classifiers cross as the number of observations in the
training set is increased. Thus, for small training sets we can not reject the linear
model.

6 Discussion

We have introduced a general framework for the analysis of functional activation
datasets. In this framework the extremely ill-posed nature of typical datasets
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Fig.4. For an fMRI study of a left-handed finger-to-thumb opposition task model
generalization (measured as the mean misclassification on an independent test set)
is plotted as a function of number of observations, Nirqin, used to estimate model
parameters. Generalization error decreases with increasing Ni,qin for the linear as well
as the nonlinear classifiers. However, generalization error decreases more rapidly and
settles at a higher level for the linear classifier than for its nonlinear counterpart. Again,
the linear classifiers can not be rejected for small datasets. As more observations become
available we are better off using the more flexible nonlinear classifiers.

imposes an immense computational burden on any modeling procedures. We have
shown how a simple coordinate transform reduces data representation without
loss of information, thus minimizing the computational load.

The importance of not measuring model performance on the same set of
data used to estimate the model parameters has been stressed, and we have
sketched how independent test sets provide empirical estimates of generalization.
We have hypothesized how generalization error decreases as more observations
become available for parameter estimation. Decreasing learning curves satisfying
our hypothesis have been demonstrated on two functional activation datasets of
PET and fMRI scans of subjects performing simple motor tasks.

By employing model families that differ in flexibility we have further shown
the effect of model flexibility on the slope of the learning curves. For the studied
tasks we have identified generalization crossovers, at which point enough ob-
servations are available to support the use of a more flexible, nonlinear model.
We believe this to have implications for the future of modeling in functional
neuroimaging; as more and more data become available the support for more
sophisticated and flexible models increase. While introducing problems of their
own (by e.g. not being linear in their parameters), these models can potentially



lead to increased knowledge of the systems that govern information processing
in the living, human brain.
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