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Abstract

The conventional linear back�propagation algorithm is replaced

by a non�linear version� which avoids the necessity for calculating

the derivative of the activation function
 This may be exploited in

hardware realizations of neural processors
 In this paper we derive

the non�linear back�propagation algorithms in the framework of re�

current back�propagation and present some numerical simulations of

feed�forward networks on the NetTalk problem
 A discussion of im�

plementation in analog VLSI electronics concludes the paper
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� Introduction

From a simple rewriting of the back�propagation algorithm �RHW��� a new
family of learning algorithms emerges which we call non�linear back�propagation�
In the normal back�propagation algorithm one calculates the errors on the
hidden units from the errors on the output neurons by means of a linear ex�
pression� The non�linear algorithms presented here have the advantage that
the back�propagation of errors goes through the same non�linear units as the
forward propagation of activities�
Using this method it is no longer necessary to calculate the derivative of

the activation function for each neuron in the network as it is in standard
back�propagation� Whereas the derivatives are trivial to calculate in a simu�
lation� they appear to be of major concern when implementing the algorithm
in hardware� be it electronic or optical� For these reasons we believe that
non�linear back�propagation is very well suited for hardware implementation�
This is the main motivation for this work�
In the limit of in	nitely small learning rate the non�linear algorithms

become identical to standard back�propagation� For small learning rates
the performance of the new algorithms is therefore comparable to standard
back�propagation� whereas for larger learning rates it performs better� The
algorithms generalize easily to recurrent back�propagation �Alm�
� Pin�
� of
which the standard back�propagation algorithm for feed�forward networks is
a special case�
In this paper we derive the non�linear back�propagation �NLBP� algo�

rithms in the framework of recurrent back�propagation and present some nu�
merical simulations of feed�forward networks on the NetTalk problem �SR�
��
A discussion of implementation in analog VLSI electronics concludes the pa�
per�

� The Algorithms

In this section we present the algorithms for non�linear back�propagation�
The derivation can be found in the next section�
We consider a general network� recurrent or feed�forward� withN neurons�

The neuron activities are denoted Vi and the weight of the connection from
neuron j to neuron i is denoted wij� Threshold values are included by means
of a 	xed bias neuron numbered i 
 ��
The activation �output� of a unit i in the network is then

Vi 
 g�hi�� hi 

P
j

wijVj � �i� ���

�



where g is the activation function and �i is external input the unit� These
equations are applied repeatedly for all neurons untill the state of activity
converges towards a 	xed point� For a feed�forward network this is guar�
anteed to happen� and the activities should be evaluated in the forward
direction� i�e� from input towards output� For a recurrent network there is
no guarantee that these equations will converge towards a 	xed point� but
we shall assume this to be the case� The equations are� however� simplest in
the general form�
The error of the network on input pattern is de	ned as

�k 
 �k � Vk ���

where �k are the target values for the output units when the input is pattern
�i and Vk is the actual output for that same input pattern� For non�output
units �i � ��
We de	ne the backward activations as

yi 
 g�hi �
�i
�i

�
P
k

�k

�k
�yk � Vk�wki � �i��� ���

where the constants �i and �i will be discussed shortly� These variables are
�e�ective� or �moving� targets for hidden units in the network� For output
units in a feed�forward network the sum on k is empty� and if the errors �i are
all zero� these equations have the simple solution yi 
 Vi� For non�zero error
iteration of these equations is likewise assumed to lead to a 	xed point in the
backwards activation state �one can easily show that if the forward equations
��� converge� the backwards equations will also converge�� Notice that during
iteration of the backward activations we keep the forward activations 	xed�
Now� consider a set of input�output patterns indexed by � 
 �� 	 	 	 � p�

and assume that the squared error is used as the cost function�

Esq 

�

�

pX
���

X
k

���k�
�	 ���

In terms of these new variables the non�linear back�propagation is then
like delta�rule learning�

�wij 
 �i

X
�

�y�i � V �
i �V

�
j 	 ���

The constants �i and �i are replacements for the usual learning rate� and
it is required that �i
�i is �small�� The reason we speak of a family of of
algorithms is that di�erent choices of � yield di�erent algorithms� Here the
parameters are allowed to di�er from unit to unit� but usually they will be
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the same for large groups of units �e�g� ones forming a layer� which simpli	es
the equations� We consider two choices of � particularly interesting� �i 
 �i
and �i 
 �� For the 	rst of these � plays a role similar to the learning rate
in delta�rule learning� since � is replaced by � in ����
For the entropic error measure �HKP��� the weight update is the same

���� but yi is de	ned as

yi 
 g�hi �
�i
�i

P
k

�k

�k
�yk � Vk�wki� �

�i
�i

�i	 ���

In this case the weight update for an output unit is exactly like the standard
one� �wij 
 �i

P
� �

�
i V

�
j � For a network with linear output units optimizing

the squared error the two equations for yi coincide�
Obviously these algorithms can be used online� i�e� changing the weights

after each pattern� just as is commonwhen using the standard back�propagation
algorithm�
Finally we would like to explicitly show the important cases of �i 
 �

and �i 
 �i for a feed�forward network� For simplicity the index � will be
dropped� Notation�

l labels the layers from � �output� to L �input��

wl
ij is the weight from unit j in layer l � � to unit i in layer l�

Any other variable �like y and V � with superscript l refers to that
variable in layer l�

It will be assumed that �i is the same for all units in a layer� �li 
 �l� The
error on the output units are denoted �i as before� Here are the two versions�
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�i 
 ��

Output unit�

y�i 
 g�h�i � ���i� �squared error��
y�i 
 V �

i � �l�i �entropic error��

Hidden unit� yli 
 g�hli �
�l

�l��

P
k�y

l��
k � V l��

k �wl��
ki �

Weight update �wl
ij 
 �y

l
i � V l

i �V
l��
j

�i 
 �i�

Output unit�

y�i 
 g�h�i � �i� �squared error��
y�i 
 V �

i � �i �entropic error��

Hidden unit� yli 
 g�hli �
P

k�y
l��
k � V l��

k �wl��
ki �

Weight update �wl
ij 
 �l�yli � V l

i �V
l��
j

� Derivation of NLBP

In this section we derive the non�linear back�propagation in the framework
of recurrent back�propagation� As an introduction� we follow the derivation
of recurrent back�propagation in �HKP��� p� �
���
��� See also �Pin�
��

��� Standard recurrent back�propagation

Assume 	xed points of the network are given by ���� and that the learning
is governed by an error measure E like ���� If we de	ne �i 
 � �E

�Vi
� which for

��� is identical to ���� the gradient descent learning rule is

�wpq 
 �
P
k

�k
�Vk
�wpq

	 �
�

Di�erentiation of the 	xed point equation ��� for Vi yields

�Vk
�wpq


 �L���kpV
�

pVq ���

�



with V �

i 
 g��hi� and the matrix L given by

Lij 
 �ij � V �

iwij 	 ���

If this matrix is positive de	nite� the dynamics will be contractive around a
	xed point� According to our assumptions this must therefore be the case�
De	ning

�p 
 V �

p

P
k

�k�L
���kp� ����

the weight update can be written as

�wpq 
 ��pVq ����

and the ��s are the solutions to

�k 
 V �

k�
P
i

�iwik � �k�	 ����

These are the standard back�propagation equations for a general network�
In a feed�forward network they converge to a 	xed point when iterated in
the backwards direction from output towards input� For a general recurrent
net they will converge towards a 	xed point when the L�matrix is positive
de	nite� as may easily be demonstrated�

��� Non�linear back�propagation

If the error measure is given by ��� the derivatives of the error measure are

�k 
 �k � Vk for the output units� � otherwise ����

For an output unit in a feed�forward network we thus 	nd �k 
 V �

k��k �
Vk�� One of the ideas of the non�linear back�propagation is to force that
interpretation on all the units� de	ning �e�ective targets� y such that

�i � yi � Vi	 ����

For small � eq� ���� can then be interpreted as a 	rst order Taylor
expansion�

�wij 
 ��iVj 
 �V �

i �
P
k

�kwki � �i�Vj

� �g�hi � ��
P
j

�jwji � �i��� g�hi��Vj ����

where g�hi� 
 Vi� The 	rst term in the brackets is just the output of a unit
with the normal input and the back�propagated error added � the e�ective
target�

yi 
 g�hi � ��
P
k

�kwki � �i��	 ����
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Note however that the �integration� in ���� is quite arbitrary� it is just one
possibility out of many given by

�wij 
 ��iVj � �i�g�hi �
�i
�i

�
P
k

�kwki � �i��� g�hi��Vj ��
�

where the �i�s are arbitrary parameters similar to the learning rates �i� For
consistency one now has to replace �k by

�k 

�k

�k
�yk � Vk� ����

Then yi is 	nally given by ��� and the weight update by ����
Formally the �integration� in eq� ���� is only valid for small � �or small

�i
�i in ��
��� But for larger � there is no guarantee that the clean gradient
descent converges anyway� and these nonlinear versions might well turn out
to work better�
By making �i very large compared to �i� one can make the NLBP indis�

tinguishable from standard back�propagation �the Taylor expansions will be
almost exact�� That would be at the expense of high numerical instability�
because yi would be very close to Vi and the formula for the weight update�
�wij 
 �i�yi � Vi�� would require very high precision� On the other hand�
very small ��s are likely to take the algorithm too far from gradient descent�
For these reasons we believe that the most interesting range is �i � �i � �
�assuming that �i 
 ��� The limit �i 
 �i is the most stable� numerically�
and �i 
 � is the most gradient�descent�like limit� Notice that if the ratios
� 
 �i
�i are the same for all neurons in the network then the equations
take the simpler form

yi 
 g�hi �
P
k

�yk � Vk�wki � ��i�� ����

and

�wij 
 �i�yi � Vi�Vj ����

��� Entropic error measure

The entropic error measure is

E 

X
i

�
�

�
�� � Vi� log

� � Vi
� � �i

� �

�
��� Vi� log

�� Vi
�� �i

�
����

if the activation function g is equal to tanh� A similar error measures exists
for other activation functions like g�x� 
 �� � e�x���� It can be shown that






for this and similar error measures

�iE 
 ��E

�Vi



�i
V �

i

	 ����

Instead of ��� yi should then be de	ned as ����

��� Internal representations

For a feedforward architecture with a single hidden layer� the weight change
formulas resemble those obtained using the method of internal representa�
tions �AKH���� However� they are not quite the same� Using our present
notation� in the present method we 	nd a change for the weight from hidden
unit j to output unit i of ���i � g�

P
k wikVk��Vj� while the internal represen�

tation approach it is ���i� g�
P

k wikyk��yj� For the input�to�hidden layer the
expressions for the weight changes in the two approaches look the same� but
the e�ective targets yj in them are di�erent� They are both calculated by
back�propagating errors �i � Vi from the output units� but in the present
case these Vi are simply the result g�

P
j wijVj� of the forward propagation�

while in the internal representations approach� Vi 
 g�
P

j wijyj�� i�e� they
are obtained by propagating the e�ective targets on the hidden layer forward
through the hidden�to�output weights�

� Test of Algorithm

The algorithms have been tested on the NetTalk problem using a feed�forward
network with an input window of 
 letters and one hidden layer consisting of
�� hidden units� The algorithms were run in online mode and a momentum
term of �	� was used� They were tested for these values of �i� �i� �	��� �	��
�	
�� and �	�� The learning rate �i was scaled according to the number ni of
connections feeding into unit i� such that �i 
 �


p
ni � a standard method

often used in back�propagation� Several values were tried for �� The initial
weights were chosen at random uniformly between ��	�
pni and �	�


p
ni�

For each value of � and �� �� cycles of learning was done� and the squared
error normalized by the number of examples was recorded at each cycle�
For all runs the 	nal error was plotted as a function of �� see 	gure ��

Clearly the runs with � 
 � are almost indistinguisable from standard back�
propagation� which is also shown� As a �corollary� these plots show that
the entropic error measure is superior � even when the object is to minimize
squared error �see also �SLF�����
In 	gure � the time development of the error is shown for the extreme

values of � and � 	xed�
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Figure �� Plots showing the squared error after �� training epocs as a function
of the size of the learning rate �� The left plot is for the squared error
cost function and the right plot for the entropic error measure� The solid
line represents the standard back�propagation algorithm� the dashed line the
nonlinear back�propagation algorithm with � 
 �� and the dot�dashed line
the one with � 
 �� The NLBP with � 
 �	�� ���� � 
 �	� �x�� and � 
 �	
�
�o� are also shown�

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

training epocs

sq
ua

re
d 

er
ro

r

Figure �� The decrease in error as a function of learning time for standard
back�propagation �solid line�� NLBP with � 
 � �dashed line�� and � 
 �
�dot�dashed line�� In all three cases the squared error function and � 
 �	��
was used�
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� Hardware Implementations

All the algorithms can be mapped topologically onto analog VLSI in a
straight�forward manner� though selecting the most stable is the best choice
because of the limited precision of this technology� In this section� we will
give two examples of the implementation of the algorithms for a feed�forward
network using �i 
 �i and the squared error cost function�
De	ning a neuron error � �li� for each layer �note �

l
i � �i for the output

layer�

�li 


�
�i � V �

i � for l 
 �P
k �

l��
k wl��

ki � for l � �
� ����

we can write ���� for �i 
 �i as

�li 
 g�hli � �li�� g�hli�	 ����

Thus� topologically this version of non�linear back�propagation maps in ex�
actly the same way on hardware as the original back�propagation algorithm
� the only di�erence being how �li is calculated ��

l
i 
 g��hli��

l
i for back�

propagation� �LB����
The system consists of two modules� A �synapse module� which cal�

culates �wl
ij� propagates h

l
i forward and propagates backward �l��j � and a

�neuron module� which forward propagates V l
i and backward propagates �

l
i�

To change the learning algorithm to non�linear back�propagation� it is thus
necessary only to change the �neuron module��

VDD

VSS

i
lV

i
lh i

l

i
l

Bias

Figure �� Continuous time non�linear back�propagation �neuron module�
with hyperbolic tangent activation function� The precision is determined by
the matching of the two di�erential pairs�

A simple way to implement a sigmoid�like activation function is by the use
of a di�erential pair� Figure � shows a non�linear back�propagation �neuron

��



module� with a hyperbolic tangent activation function� Applying hli and ��li
as voltages gives the V l

i and �
l
i outputs as di�erential currents �the �synapse

module� can just as well calculate ��li as �li�� It is interesting to notice that
the circuit structure is identical to the one used in �Bog��� to calculate the
derivative of the activation function� Replacing �li by a small constant� �� the
�li output will approximate g

��hli� ��� Using the circuit in the proposed way�
however� gives better accuracy� The �li is not a �small� quantity which makes
the inherent inaccuracies less signi	cant� relatively� Further� the circuit cal�
culates the desired �li directly� eliminating the need of an extra multiplier �
and thus eliminating a source of error� The accuracy of the circuit is deter�
mined by the matching of the two di�erential pairs and of the bias sources�
This can be in the order of � of the output current magnitude�
In a �standard implementation� of the �synapse module�� the hli and �li

outputs will be available as currents and the V l
i and �li inputs must be ap�

plied as voltages� Thus the above implementation requires accurate transre�
sistances to function properly� Also� as the same function is used to calculate
the V l

i s and the �
l
is� it would be preferable to use the same hardware as this

eliminates the need of matched components� This is possible if the system
is not required to function in continuous time� though the output has to be
sampled �which introduces errors��

i
lV

i
lh

i
l

i
l

Bias

Bias

VDD

Vmax

VSS

Vmin

1

1 1

1
122

2 2

:

:

Figure �� Discrete time non�linear back�propagation �neuron module� with
non�linear activation function� The precision is determined by the accuracy
of the switched capacitor�

In 	gure � such a simpli	ed discrete time �neuron module� which reuses
the activation function block and which has current input!voltage outputs
is shown� During the �� clock phase� V l

i is available at the output and is
sampled at the capacitor� During the �� clock phase� �li is available at the
output� The activation function saturates such that Vmin � V l

i � Vmax�
though it is not very well de	ned� This is of no major concern� however� the
accuracy is determined by the switched capacitor� Using design techniques to
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reduce charge injection and redistribution� the accuracy can be in the order
of ��� of the output voltage swing�
As illustrated� the non�linear back�propagation learning algorithm is well

suited for analogue hardware implementation� though o�set compensation
techniques still have to be employed� It maps topologically on hardware in
the same way as ordinary back�propagation� but the circuit to calculate the
�lis is much more e"cient� It can approximate the learning algorithm equa�
tions more accurately and as the algorithm requires only simple operations
apart from the activation function� design e�orts can be put on the electrical
speci	cations of the hardware �input impedance� speed� noise immunity� etc��
and on the general shape of the sigmoid�like activation function� Further�
as the algorithm requires only one �special function�� it has the potential of
very high accuracy through reuse of this function block�

� Conclusion

A new family of learning algorithms have been derived that can be thought of
as �non�linear gradient descent� type algorithms� For appropriate values of
the parameters they are almost identical to standard back�propagation� By
numerical simulations of feed�forward networks learning the NetTalk problem
it was shown that the performance of these algorithms were very similar to
standard back�propagation for the range of parameters tested�
The algorithms have two important properties that we believe make

them easier to implement in electronic hardware than the standard back�
propagation algorithm� First� no derivatives of the activation function need
to be calculated� Second� the back�propagation of errors is through the same
non�linear network as the forward propagation� and not a linearized network
as in standard back�propagation� Two examples of how analogue electronic
hardware can utilize these properties have been given� These advantages may
also be expected to carry over to optical implementations�
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