Non-Linear Back-propagation: Doing
Back-Propagation without Derivatives of
the Activation Function.

John Hertz

Nordita, Blegdamsvej 17, 2100 Copenhagen, Denmark
Email: hertz@nordita.dk

Anders Krogh

Electronics Institute, Technical University of Denmark, Building 349
2800 Lyngby, Denmark, Email: krogh@nordig.ei.dth.dk

Benny Lautrup
The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

Email: lautrup@nbivax.nbi.dk

Torsten Lehmann
Electronics Institute, Technical University of Denmark, Building 349
2800 Lyngby, Denmark, Email: tlehmann@eileen.ei.dth.dk

March 4, 1994

Abstract

The conventional linear back-propagation algorithm is replaced
by a non-linear version, which avoids the necessity for calculating
the derivative of the activation function. This may be exploited in
hardware realizations of neural processors. In this paper we derive
the non-linear back-propagation algorithms in the framework of re-
current back-propagation and present some numerical simulations of
feed-forward networks on the NetTalk problem. A discussion of im-
plementation in analog VLSI electronics concludes the paper.

1 Introduction

From a simple rewriting of the back-propagation algorithm [RHW86] a new
family of learning algorithms emerges which we call non-linear back-propagation.
In the normal back-propagation algorithm one calculates the errors on the
hidden units from the errors on the output neurons by means of a linear ex-
pression. The non-linear algorithms presented here have the advantage that
the back-propagation of errors goes through the same non-linear units as the
forward propagation of activities.

Using this method it is no longer necessary to calculate the derivative of
the activation function for each neuron in the network as it is in standard
back-propagation. Whereas the derivatives are trivial to calculate in a simu-
lation, they appear to be of major concern when implementing the algorithm
in hardware, be it electronic or optical. For these reasons we believe that
non-linear back-propagation is very well suited for hardware implementation.
This is the main motivation for this work.

In the limit of infinitely small learning rate the non-linear algorithms
become identical to standard back-propagation. For small learning rates
the performance of the new algorithms is therefore comparable to standard
back-propagation, whereas for larger learning rates it performs better. The
algorithms generalize easily to recurrent back-propagation [Alm87, Pin87] of
which the standard back-propagation algorithm for feed-forward networks is
a special case.

In this paper we derive the non-linear back-propagation (NLBP) algo-
rithms in the framework of recurrent back-propagation and present some nu-
merical simulations of feed-forward networks on the NetTalk problem [SR87].
A discussion of implementation in analog VLSI electronics concludes the pa-
per.

2 The Algorithms

In this section we present the algorithms for non-linear back-propagation.
The derivation can be found in the next section.

We consider a general network, recurrent or feed-forward, with N neurons.
The neuron activities are denoted V; and the weight of the connection from
neuron j to neuron ¢ is denoted w;;. Threshold values are included by means
of a fixed bias neuron numbered : = 0.

The activation (output) of a unit 7 in the network is then

Vi = g(hi), hi =3 wi; Vi + &, (1)
J

where ¢ is the activation function and ¢; is external input the unit. These
equations are applied repeatedly for all neurons untill the state of activity
converges towards a fixed point. For a feed-forward network this is guar-
anteed to happen, and the activities should be evaluated in the forward
direction, i.e. from input towards output. For a recurrent network there is
no guarantee that these equations will converge towards a fixed point, but
we shall assume this to be the case. The equations are, however, simplest in
the general form.
The error of the network on input pattern is defined as

& = G — Vi (2)

where (j, are the target values for the output units when the input is pattern
& and Vj, is the actual output for that same input pattern. For non-output
units ¢; = 0.

We define the backward activations as

i = g(hs + 2[5 " (g = ViJwsi +). (3)
aE e

where the constants 1; and «; will be discussed shortly. These variables are
“effective” or “moving” targets for hidden units in the network. For output
units in a feed-forward network the sum on k is empty, and if the errors ¢; are
all zero, these equations have the simple solution y; = V;. For non-zero error
iteration of these equations is likewise assumed to lead to a fixed point in the
backwards activation state (one can easily show that if the forward equations
(1) converge, the backwards equations will also converge). Notice that during
iteration of the backward activations we keep the forward activations fixed.
Now, consider a set of input-output patterns indexed by p = 1,...,p,

and assume that the squared error is used as the cost function,

B = LS ()

n=1 k

In terms of these new variables the non-linear back-propagation is then
like delta-rule learning,

Awgj = a;) (g = V)V ()

I

The constants «; and 7; are replacements for the usual learning rate, and
it is required that n;/a; is “small”. The reason we speak of a family of of
algorithms is that different choices of « yield different algorithms. Here the
parameters are allowed to differ from unit to unit, but usually they will be

the same for large groups of units (e.g. ones forming a layer) which simplifies
the equations. We consider two choices of « particularly interesting: a; = n;
and «; = 1. For the first of these 5 plays a role similar to the learning rate
in delta-rule learning, since « is replaced by 7 in (5).

For the entropic error measure [HKP91] the weight update is the same
(5), but y; is defined as
i Ak 7
yi = glhi 4 230 (e = Vigww) + e (6)
In this case the weight update for an output unit is exactly like the standard
one, Aw;; = n; 3_, €'V}, For a network with linear output units optimizing
the squared error the two equations for y; coincide.

Obviously these algorithms can be used online, i.e. changing the weights
after each pattern, just as is common when using the standard back-propagation
algorithm.

Finally we would like to explicitly show the important cases of a; = 1
and a; = n; for a feed-forward network. For simplicity the index p will be
dropped. Notation:

[labels the layers from 0 (output) to L (input).

wﬁj is the weight from unit j in layer [4+ 1 to unit ¢ in layer [.

Any other variable (like y and V) with superscript [refers to that
variable in layer [.

It will be assumed that 7; is the same for all units in a layer, n! = 5'. The
error on the output units are denoted ¢; as before. Here are the two versions:

o, = 1.

Output unit:
y? — g(h? + 77062') (squared error).
y? = VP + n'e; (entropic error).
Hidden unit: yf» = g(hi + o Zk(y]lg_l - Vkl_l)wgl)

77l—1

Weight update Ang = (y! - Vz’l)leH

o, = 1.

Output unit:
¥ = g(h? + ¢) (squared error).
y? = VO + ¢ (entropic error).

Hidden unit: 3! = g(h} 4+ S, (v — ViTHwlsh)

Weight update Aw;, = n'(y! — Vz’l)vjl“

3 Derivation of NLBP

In this section we derive the non-linear back-propagation in the framework
of recurrent back-propagation. As an introduction, we follow the derivation
of recurrent back-propagation in [HKP91, p. 172-175]. See also [Pin87].

3.1 Standard recurrent back-propagation

Assume fixed points of the network are given by (1), and that the learning

is governed by an error measure E like (4). If we define ¢; = —%, which for
(4) is identical to (2), the gradient descent learning rule is
IV
Aw,, = : 7
Wpq = 7] Zk: €k 9w, (7)
Differentiation of the fixed point equation (1) for V; yields
IV
= (LY, V'V, 8
awpq ()kp P4 ()

with V! = ¢'(h;) and the matrix L given by
Lij = 65 — Viwy;. (9)

If this matrix is positive definite, the dynamics will be contractive around a
fixed point. According to our assumptions this must therefore be the case.

Defining
= VSl (10)

the weight update can be written as
Awpy =16,V (11)
and the ¢’s are the solutions to

o = Vi (32 bqwir, + €x). (12)

These are the standard back-propagation equations for a general network.
In a feed-forward network they converge to a fixed point when iterated in
the backwards direction from output towards input. For a general recurrent
net they will converge towards a fixed point when the L-matrix is positive
definite, as may easily be demonstrated.

3.2 Non-linear back-propagation
If the error measure is given by (4) the derivatives of the error measure are
ex = (. — Vi for the output units, 0 otherwise (13)

For an output unit in a feed-forward network we thus find 6, = V/((x —
Vi). One of the ideas of the non-linear back-propagation is to force that
interpretation on all the units, defining ‘effective targets’ y such that

For small n eq. (11) can then be interpreted as a first order Taylor
expansion:

Aw = 58V = Vi3 drwni + €)V
~ [g(hi + 2 jw;i + &) — g(hs)]V; (15)
J
where g(h;) = Vi. The first term in the brackets is just the output of a unit

with the normal input and the back-propagated error added — the effective
target:

yi = g(hi + U[Zk: opwri + €]). (16)

6

Note however that the “integration” in (15) is quite arbitrary; it is just one
possibility out of many given by

Awy; = 16V ~ agg(h; + Z—@ opwri + €]) — g(hi)]V; (17)

where the «;’s are arbitrary parameters similar to the learning rates ;. For
consistency one now has to replace 6 by

5 =~y — Vi) (18)
Nk
Then y; is finally given by (3) and the weight update by (5).

Formally the “integration” in eq. (15) is only valid for small 5 (or small
n:/a; in (17)). But for larger n there is no guarantee that the clean gradient
descent converges anyway, and these nonlinear versions might well turn out
to work better.

By making «; very large compared to 7;, one can make the NLBP indis-
tinguishable from standard back-propagation (the Taylor expansions will be
almost exact). That would be at the expense of high numerical instability,
because y; would be very close to V; and the formula for the weight update,
Aw;; = a;(y; — Vi), would require very high precision. On the other hand,
very small a’s are likely to take the algorithm too far from gradient descent.
For these reasons we believe that the most interesting range is n; < «o; <1
(assuming that n; < 1). The limit a; = 7; is the most stable, numerically,
and «; = 1 is the most gradient-descent-like limit. Notice that if the ratios
A = n;/a; are the same for all neurons in the network then the equations
take the simpler form

yi = g(hi + Zk:(yk — Vi)wri + X)), (19)

and

Awi; = ai(yi = Vi)Vj (20)

3.3 Entropic error measure

The entropic error measure is

L1 — V)l
1‘|'Q+2(V)Ogl—é}

E =30 |41+ Vi) log (21)

if the activation function ¢ is equal to tanh. A similar error measures exists
for other activation functions like g(x) = (1 4+ e™*)~!. It can be shown that

7

for this and similar error measures

6E c;
= ——— = 22
J ov. v/ 22)

Instead of (3) y; should then be defined as (6).

3.4 Internal representations

For a feedforward architecture with a single hidden layer, the weight change
formulas resemble those obtained using the method of internal representa-
tions [AKH90]. However, they are not quite the same. Using our present
notation, in the present method we find a change for the weight from hidden
unit j to output unit ¢ of n[¢; — g(>°; wir Vi)]V;, while the internal represen-
tation approach it is n[¢; — ¢(> wikyk)]y;. For the input-to-hidden layer the
expressions for the weight changes in the two approaches look the same, but
the effective targets y; in them are different. They are both calculated by
back-propagating errors (; — V; from the output units, but in the present
case these V; are simply the result ¢(3°; w;;V;) of the forward propagation,
while in the internal representations approach, V; = ¢(3°; wi;y;), i.e. they
are obtained by propagating the effective targets on the hidden layer forward
through the hidden-to-output weights.

4 Test of Algorithm

The algorithms have been tested on the NetTalk problem using a feed-forward
network with an input window of 7 letters and one hidden layer consisting of
80 hidden units. The algorithms were run in online mode and a momentum
term of 0.8 was used. They were tested for these values of «;: n;, 0.25, 0.5,
0.75, and 1.0. The learning rate n; was scaled according to the number n; of
connections feeding into unit ¢, such that »; = n/,/n; — a standard method
often used in back-propagation. Several values were tried for 5. The initial
weights were chosen at random uniformly between —0.5/,/n; and 0.5/,/n;.
For each value of a and 5, 50 cycles of learning was done, and the squared
error normalized by the number of examples was recorded at each cycle.

For all runs the final error was plotted as a function of 7, see figure 1.
Clearly the runs with o« = 1 are almost indistinguisable from standard back-
propagation, which is also shown. As a “corollary” these plots show that
the entropic error measure is superior — even when the object is to minimize
squared error (see also [SLEF88]).

In figure 2 the time development of the error is shown for the extreme
values of a and n fixed.

squared error
squared error

L L L L L L
[05 1 15 25 3 35 4

2.,
leta

Figure 1: Plots showing the squared error after 50 training epocs as a function
of the size of the learning rate 1. The left plot is for the squared error
cost function and the right plot for the entropic error measure. The solid
line represents the standard back-propagation algorithm, the dashed line the
nonlinear back-propagation algorithm with o = 5, and the dot-dashed line
the one with o = 1. The NLBP with o = 0.25 (*), @ = 0.5 (x), and o = 0.75

(0) are also shown.

squared error

1
0 5 10 15 20 25 30 35 40 45 50
training epocs

Figure 2: The decrease in error as a function of learning time for standard
back-propagation (solid line), NLBP with @ = 1 (dashed line), and o = 1
(dot-dashed line). In all three cases the squared error function and 5 = 0.05
was used.

5 Hardware Implementations

All the algorithms can be mapped topologically onto analog VLSI in a
straight-forward manner, though selecting the most stable is the best choice
because of the limited precision of this technology. In this section, we will
give two examples of the implementation of the algorithms for a feed-forward
network using a; = n; and the squared error cost function:

Defining a neuron error, ¢!, for each layer (note ¢! = ¢ for the output
layer)

CfGove ferl=0
“ = {Zk 5,1;1102;1, forl>0" (23)

we can write (18) for a; = 1; as
8t = g(hi + i) — g(h}). (24)

Thus, topologically this version of non-linear back-propagation maps in ex-
actly the same way on hardware as the original back-propagation algorithm
— the only difference being how &! is calculated (&! = ¢'(hl)e! for back-
propagation) [LB93]:

The system consists of two modules: A “synapse module” which cal-
I+1.

?
“neuron module” which forward propagates V' and backward prof)agates 6L
To change the learning algorithm to non-linear back-propagation, it is thus

culates Ang, propagates h! forward and propagates backward ¢ and a

necessary only to change the “neuron module”.

Vop T
| e 'lf
[|- [
jl = ”t
i “
! —» &
hi O I/ K E— |
L V! T O—E
Bias o |
Vss L

Figure 3: Continuous time non-linear back-propagation “neuron module”
with hyperbolic tangent activation function. The precision is determined by
the matching of the two differential pairs.

A simple way to implement a sigmoid-like activation function is by the use
of a differential pair. Figure 3 shows a non-linear back-propagation “neuron

10

module” with a hyperbolic tangent activation function. Applying i} and —¢!
as voltages gives the V! and ¢! outputs as differential currents (the “synapse
module” can just as well calculate —¢! as ¢}). It is interesting to notice that
the circuit structure is identical to the one used in [Bog93] to calculate the
derivative of the activation function: Replacing ¢! by a small constant, A, the
6! output will approximate ¢’(hl)- A. Using the circuit in the proposed way,
however, gives better accuracy: The ¢! is not a “small” quantity which makes
the inherent inaccuracies less significant, relatively. Further, the circuit cal-
culates the desired ¢! directly, eliminating the need of an extra multiplier —
and thus eliminating a source of error. The accuracy of the circuit is deter-
mined by the matching of the two differential pairs and of the bias sources.
This can be in the order of 1% of the output current magnitude.

In a “standard implementation” of the “synapse module”, the Al and ¢!
outputs will be available as currents and the V! and é! inputs must be ap-
plied as voltages. Thus the above implementation requires accurate transre-
sistances to function properly. Also, as the same function is used to calculate
the Vi's and the éls, it would be preferable to use the same hardware as this
eliminates the need of matched components. This is possible if the system
is not required to function in continuous time, though the output has to be
sampled (which introduces errors).

\bo T

Sil jl _ T Vmax
| o, } ‘ ||@ o, l O Vil
h . e)
' —> | Bias | 0, 9,0 8
Vmin
ol

Figure 4: Discrete time non-linear back-propagation “neuron module” with
non-linear activation function. The precision is determined by the accuracy
of the switched capacitor.

In figure 4 such a simplified discrete time “neuron module” which reuses
the activation function block and which has current input/voltage outputs
is shown. During the ¢; clock phase, V! is available at the output and is
sampled at the capacitor. During the ¢, clock phase, é! is available at the
output. The activation function saturates such that V;, < Vil < Vinax,
though it is not very well defined. This is of no major concern, however; the
accuracy is determined by the switched capacitor. Using design techniques to

11

reduce charge injection and redistribution, the accuracy can be in the order
of 0.1% of the output voltage swing.

As illustrated, the non-linear back-propagation learning algorithm is well
suited for analogue hardware implementation, though offset compensation
techniques still have to be employed. It maps topologically on hardware in
the same way as ordinary back-propagation, but the circuit to calculate the
é!s is much more efficient: It can approximate the learning algorithm equa-
tions more accurately and as the algorithm requires only simple operations
apart from the activation function, design efforts can be put on the electrical
specifications of the hardware (input impedance, speed, noise immunity, etc.)
and on the general shape of the sigmoid-like activation function. Further,
as the algorithm requires only one “special function”, it has the potential of
very high accuracy through reuse of this function block.

6 Conclusion

A new family of learning algorithms have been derived that can be thought of
as “non-linear gradient descent” type algorithms. For appropriate values of
the parameters they are almost identical to standard back-propagation. By
numerical simulations of feed-forward networks learning the NetTalk problem
it was shown that the performance of these algorithms were very similar to
standard back-propagation for the range of parameters tested.

The algorithms have two important properties that we believe make
them easier to implement in electronic hardware than the standard back-
propagation algorithm. First, no derivatives of the activation function need
to be calculated. Second, the back-propagation of errors is through the same
non-linear network as the forward propagation, and not a linearized network
as in standard back-propagation. Two examples of how analogue electronic
hardware can utilize these properties have been given. These advantages may
also be expected to carry over to optical implementations.

12

References

[AKH90]

[Alm87]

[ARSS]

[Bog93]

[HKP91]

[LB93]

[Ping7]

[RIWS6]

[SLESS]

[SR87]

G. I. Thorbergsson A. Krogh and J. A. Hertz. A cost function for
internal representations. In Neural Information Processing Sys-
tems 2, pages 733-740, D. S Touretzky, ed. San Mateo CA: Mor-
gan Kauffmann, 1990.

L.B. Almeida. A learning rule for asynchronous perceptrons with
feedback in a combinatorial environment. In M. Caudill and
C. Butler, editors, IEEFE International Conference on Neural Net-
works, volume 2, pages 609-618, San Diego 1987, 1987. IEEE, New
York.

J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foun-
dations of Research. MIT Press, Cambridge, 1988.

G. Bogason. Generation of a neuron transfer function and its

derivative. Electronics Letters, 29:1867-1869, 1993.

J.A. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory
of Neural Computation. Addison-Wesley, Redwood City, 1991.

T. Lehmann and E. Bruun. Analogue VLSI implementation of
back-propagation learning in artificial neural networks. In Proe.
11°th European Conference on Circuit Theory and Design, pages
491-496, Davos 1993, 1993.

F.J. Pineda. Generalization of back-propagation to recurrent neu-
ral networks. Physical Review Letters, 59:2229-2232, 1987.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533-536, 1986.
Reprinted in [ARSS].

S.A. Solla, E. Levin, and M. Fleisher. Accelerated learning in
layered neural networks. Complex Systems, 2:625-639, 1988.

T.J. Sejnowski and C.R. Rosenberg. Parallel networks that learn
to pronounce english text. Complex Systems, 1:145-168, 1987.

13

