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Kauffman’s NK model for genetic evolution and adaption is analyzed for K = N — 1. In this
case it describes adaptive walks on random fitness landscapes, and its dynamics is equivalent to the
Metropolis algorithm for Derrida’s random-energy model at zero temperature. We derive analytical
expressions for the average length and duration of adaptive walks, and for the variance about these
averages. The results are exact to leading order in N, the number of genes. We also find that the
lengths of walks are Poisson distributed to leading order in 1/1In N, and that the duration of walks
essentially is exponentially distributed to leading order in 1/N.
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I. INTRODUCTION

Energy landscapes with many local minima are by now
a well-studied subject in the statistical mechanics of spin
glasses, and are currently studied in the statistical me-
chanics of protein folding. Similar landscapes of fitness
with many local maxima instead of minima have also
attracted attention in evolutionary biology and in com-
puter science. Theoretical biologists use them in models
of evolution. Computer scientists must deal with them,
as they appear in combinatorial optimization problems,
and in the training of neural networks — and use algo-
rithms mimicking evolution to try to solve these hard
optimization problems [1]. In the present paper we con-
sider a proto-typical model suggested by Kauffman (2, 3]:
the evolution of a general haploid organism with a single
copy of chromosomes. Evolution is driven by random mu-
tations of individual genes and takes place in a random
fitness landscape. We choose to study this particular sys-
tem, because we believe it is not so particular, after all:
we expect it appears as the universal result of a coarse-
grained description of a wide class of systems (Sec. II).
Averaging over landscapes and evolutionary histories, we
find probability distributions for the length (Secs. III-V)
and duration (Secs. VI and VII) of evolutions to local
fitness maxima.

Some of the analytical results presented below have
been seen in numerical studies [4, 5], and derived in [6)].
We have included them to make the presentation self-
contained. Different but related results have been ob-
tained for the NK model with general K > 1 in [7]. We
developed our analytical understanding of the evolution
of isolated species of the kind described below in order to
obtain an analytical understanding of their coevolution
in an “ecosystem” of interacting species, like the ecosys-
tem described in [8]. Such an analytical understanding is
much desirable, both by itself and as a guide for computer
simulations, because simulations of an entire ecosystem
are very demanding, and difficult to do with precision.
An analytical understanding of one model can be used
to understand what to expect, and where to look for it,
in simulations of related models that cannot be solved
analytically.

Using our analytical understanding of the evolution of
species in isolation, we have been able to obtain several
analytical results for coevolving species, as they are mod-
eled with Kauffman’s NKC model. Our results include
the existence and location of a phase transition between
chaotic and frozen dynamics, a natural order parameter
for this transition, and the relaxation time of the sys-
tem anywhere in the two phases. We have collected all
necessary results on evolution in isolation in the present
paper, and collected our results on coevolution in the ac-
companying paper [9]. The reader looking for results on
the NKC model should be able to start with the second
paper, and return to the present paper on the NK model
only when referred to it for an explanation.

II. THE SYSTEM

We consider a very simple organism, whose properties
are entirely given by N distinct genes. We do not distin-
guish between genotype and phenotype, and ignore ge-
netic diversity within a population. So an entire species
of this simple organism is represented by the N genes.
Truly, diversity, maintained by mutation and trimmed
by selection, provides the mechanism of evolution. But
if selection proceeds much faster than mutations occur,
then we may represent a population by a dominant type,
as suggested by Gillespie [10], and ignore diversity, ex-
cept as a reason to choose the particular dynamics we
choose. We do not describe extinction of species, nor
their proliferation through branching, with this simple
model, though we could do so.

We consider an evolution driven by mutations of in-
dividual, randomly chosen genes. One mutation occurs
per unit of time. If it leads to higher fitness, it is ac-
cepted, and the population changes accordingly, and is
said to have evolved one step. If a mutation leads to
lower fitness, it is rejected, and the population remains
unchanged during that time step. Tie situations, with
two genetic configurations having the same fitness, do
not occur (have measure zero), due to the way we assign
fitness to genetic configurations.
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46 EVOLUTION IN A RUGGED FITNESS LANDSCAPE

Each gene can occur in A different versions, or alle-
les. So the set of genes representing a species can occur
in AN different configurations. We call the set of these
configurations configuration space. In the case of A = 2,
the two possible alleles of each gene may be labeled 0
and 1, and configuration space may be visualized as the
corners of the unit cube in N dimensions, each corner
corresponding to a different possible organism, and cor-
ners separated by one edge being one-mutant neighbors.
We shall assume A = 2 for the remainder of this paper
with no essential loss of generality. We expect very sim-
ilar results for any other value of A, as long as A < N.
We shall often assume N is a large number, and expand
in 1/N or take the limit N — oo in order to simplify
calculations and resulting expressions.

We assign a fixed fitness to each point in configuration
space. This assignment defines a fitness landscape. We
assume that this fitness landscape is maximally rugged:
the fitness f of any point in configuration space is ran-
dom, drawn from a continuous distribution p(f), the
same distribution p being used at all points. The par-
ticular distribution used does not matter; we shall not
even bother to introduce it in our considerations below,
because it turns out that it disappears again by a trans-
formation of variables to F' = [ u o 4f' p(f'). In the case
where p is uniform on the interval 0 < f < 1, we have
f = F. So for convenience we shall refer to F' as the
fitness, although F' in the general case really denotes the
probability for fitness less than f. The elimination of
p(f) in equations expresses that the value f of the fit-
ness is irrelevant; only the probability F' of being less fit
matters.

We have two reasons to consider random fitness land-
scapes; the first reason is a conjecture, the second is
proven correct in this and the accompanying paper:

(1) Evolution in any fitness landscape having an ef-
fectively finite correlation length will, when viewed at
sufficiently coarse-grained scales of time and space (con-
figuration space, i.e.), look like evolution in a random
fitness landscape. So evolution in a random fitness land-
scape describes the large-scale behavior of evolution in a
large class of landscapes. Consequently, with this choice
of landscape we are avoiding the particular, while treat-
ing a quite general case.

(2) It is technically convenient: the absence of correla-
tions allows us to derive a number of analytical results.

Notice that from a mathematical point of view, N
might as well be the number of positions in the primary
sequence of a protein, with A = 20 denoting the 20 amino
acids that potentially could occur at each position. Or
A = 4 could denote the 4 nucleotides possible at each
site in a DNA sequence of length N.

Alternatively, we may think of the N genes and their A
alleles as N Potts spins and their A possible values in an
A-state Potts model. With V = —f denoting the energy
of a spin configuration, we recognize Derrida’s random-
energy model [11,12]. In this language, the dynamics of
mutations described above is the random-site Metropolis
algorithm at zero temperature.

Viewed as a model for evolution by mutation and se-
lection in a fitness landscape, the system just described
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is a special case of Kauffman’s NK model, the case of
K=N-1[23].

III. ESTIMATING THE LENGTH OF WALKS

Evolution traces out a path in configuration space. At
each time step, the path is either extended one step from
its current end point to a nearest neighbor — when a mu-
tation leading to higher fitness is offered to and accepted
by evolution — or the path is not extended — because a
mutation leading to lower fitness is offered and rejected.
This path is often referred to as an adaptive walk.

In this and the next two sections, we are not concerned
with the temporal aspects of evolution, but only with the
length ¢ of adaptive walks. This limitation simplifies the
description a good deal. In subsequent sections temporal
aspects are treated.

Before we get involved with mathematics, let us esti-
mate the average length of adaptive walks, and the av-
erage fitness they lead to. The qualitative picture thus
obtained is confirmed by rigorous calculations in the next
section.

We assume N is large. The dimension of configuration
space is N. We assume the length of adaptive walks is
much smaller than v/N, and find this assumption consis-
tent with the results it leads to. Since the walk proceeds
by random mutations, it proceeds in random directions
in configuration space. There are many more directions
than there are steps in the walk, by assumption. So each
step in the walk has a different direction. In each step of
the adaptive walk, the fitness F' is increased. The value
it increases to is uncorrelated (to leading order in 1/N;
see the Appendix for details) with its previous value, ex-
cept it is larger, of course. Consequently, in each step
1 — F is halved, on the average. Thus, starting the walk
with F = 0, after £ steps the average fitness is 1 — 2.
An adaptive walk stops when all neighbor positions have
lower fitness than the current position. Since fitnesses
are random and uncorrelated, this happens when N in-
dependent random numbers happen to be smaller than
F. On the average, this occurs when 1 — F ~ 1/N. This
is our estimate for the average final fitness, and, setting
1— F ~ 27¢, we have an estimate for the average length
of an adaptive walk:

£~1nN/In2. (1)

In the derivation of this result, we neglected correlations
between fluctuations around the averages that we worked
with. They do not change the logarithmic dependence on
N in Eq. (1), but do change the coefficient of In V.

In addition to a more precise result for the average
length of adaptive walks, we want to know the probability
distribution Q, for £. In [5], “long upper tails containing
little probability” were seen in numerical results for Q,.
So one may wonder whether Q, decreases as a power of ¢
at large ¢, or faster. The next sections fills in these gaps
in our picture of adaptive walks.
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IV. THE LENGTH OF WALKS

When duration is not of interest, but length is, the
simplest quantity to work with is the probability density
pe(F) that an adaptive walk contains (at least) £ steps,
and has fitness I after these £ steps. Evolution by ran-
dom mutations through fitter one-mutant neighbors can
be described approximately by a recursion relation:

1— F/N—l

T pe(F') for £=1,2,....

(2)

F
Pe+1(F)=/ dF’
0

This recursion relation expresses that fitness F is ac-
quired in £ + 1 evolutionary steps by acquiring any lower
fitness F’ in £ steps, and taking one more step to fit-
ness F. Taking the last step requires that not all NV
one-mutant neighbors in configuration space are less fit.
One is — the one that was reached after £ — 1 steps.
The remaining N — 1 neighbors have fitness less than F”,
each with probability F', since their fitness is random.
Here we assume that they were not probed previously by
the path of evolution. This assumption is only approxi-
mately true, so Eq. (2) is an approximation. Within this
approximation, the probability that not all neighbors are
less fit is 1 — F"N~=1. When this is the case, the (£ +1)th
evolutionary step will be taken, and leads to any fitness
above F’ with equal probability, hence to fitness F' in the
interval dF’ with probability dF'/(1 — F’).

The approximation we have made with Eq. (2) relies
on N being large. While the power N — 1 on F’ ex-
cludes evolutionary back-tracking, Eq. (2) does not ex-
clude that the path of evolution intersects itself or visits
other points in configuration space that it probed and re-
jected at an earlier time. Such intersections are forbidden
by the dynamics, which forces the path to always higher
degrees of fitness in a fixed landscape, or to stop at a lo-
cal maximum. However, in Eq. (2), the N —1 one-mutant
neighbors which are not a state’s immediate predecessor
in evolution are all treated as if they were never probed
before by the evolutionary process. But some of them
may have been, in which case we know that their fitness
is lower than the current one. So Eq. (2) yields an upper
bound for the true value of pe(F'), because the exact re-
lation has a power lower than or equal to N — 1, where
Eq. (2) has N—1. This exact power depends on the entire
path of evolution up to the currents state, so the approx-
imation made with Eq. (2) causes a vast simplification
of the problem. In the appendix we give arguments that
this approximation is correct to leading order in an ex-
pansion in 1/N.

In view of the further approximation considered below,
all we really need are results to leading order in N. But
since we can solve Eq. (2) as it stands — i.e., with back-
tracking forbidden, and self-intersection permitted — we
shall do that for definiteness.

Introducing the monotonic function

N 1 .
Hy(F) =Y £ F", 3)
k=1
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a change of variable to H = Hy_1(F') in Eq. (2) gives

H
pg+1(H)=/ dH'py(H') for £=1,2,..., (4)
0

which is easily iterated to give

1 " / ne-1 !
pe(H) = =gy [ 4 (H = B ). (9

For definiteness and notational convenience, we let all
adaptive walks begin in the least-fit state, characterized
by F = 0. Since there is zero probability for this state be-
ing a local maximum of fitness, the first step of the adap-
tive walk is always taken. For notational convenience, we
let £ denote the number of steps taken in excess of this
first step. Then the initial condition reads as

p-1(F) = 6(F). (6)

This rather eccentric choice of initial condition assures
that the walk has a predecessor for all values of £ > 0.
This makes formulas look simpler, and makes Egs. (2)

and (4) valid also for £ = —1. They have the unique
solution
pe(F) = %HN_l(F)f for £=0,1,2,.... (7

Obviously, for fixed F' < 1
Hy(F) - —In(1—F) for N — oo, (8)

while for F = 1, Hy(1) are the harmonic numbers dis-

cussed by Knuth in [13],

=y(N+1)+vg =InN+v5+ O(N1),

(9)

where ¥(z) = d InT'(z)/dz, and yg = 0.57721566... is
Euler’s constant. For general F' we note that

Hy(F) =1li(FN*Y) —In[-In(F)] + O(N™Y),  (10)
where li is the logarithmic integral. We shall need that
Hy(1 —z/N)=InN +vg — Ein(z) + O(N™!)

for =z~ O(1), (11)

where Ein(z) is an entire function related to the expo-
nential integral [14]:

1—et

Ein(z) =/ dt ;
0

As stated above, Eq. (2) is the simplest relation we
can write down for a probability describing the length of
the adaptive walks considered here, in the approximation
specified. The probability that a walk contains (at least)
¢ steps is obtained from py(F') by integration over F:

=Ei(z)+lnz+ve. (12)



46 EVOLUTION IN A RUGGED FITNESS LANDSCAPE

P = / dF pu(F) = 7 / dFHy_1(F)t
0 - JO

N-1
D> 1
_e!k = kiekg(ki 4+ R+ 1)
1)-.ske=1
for £=0,1,2,.... (13)

Integration over F' on both sides in Eq. (2) gives

1
Ppy=P— / dFFN=1p,(F), (14)
0

which obviously cannot be made into a closed equation
for Py. The remaining integral in Eq. (14) is the probabil-
ity that an adaptive walk contains ezactly ¢ steps. This is
a quantity of interest. We introduce the notation @, for
it, and go(F) for the corresponding probability density
that a walk stops with fitness F' after exactly £ steps:

1

=FN_lpg(F) =FN le

9e(F) -Hy-1(F)*

for £=0,1,2,..., (15)

Q.= / lqug(F / dFFN-1Hyn_((F)*

1 = 1
2 P ky--- ke(k1 + o+ ke + N)
for £=0,1,2,..., (16)
From Eq. (14) follows
Qe = Py — Ppy1. (17)
Since Eq. (6) implies
Q-1=0, F=1, (18)

normalization of ¢,(F) and Q, follows trivially from
Eq. (17):

/ dF u(F) = ZQe S (Pe- Pen) = Po=1.

prs
(19)

Here we have used limy_,o Py = 0, and we have set the
upper limit on the sum over ¢ to infinity for convenience.
Strictly speaking, this upper limit is AV, the number of
points in configuration space. We shall see below that
typical values for ¢ are of order In N, and much larger
values of £ occur with probabilities that are more than
exponentially suppressed. So the effect of this change in
the upper limit is truly negligible.

Inserting Eq. (15) in Eq. (19) and summing over £, we
see that normalization means

/ 1 dFFN=lexp[Hn_1(F)] =1 (20)
0
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for any positive integer N. This identity is exact, and
may also be proven directly; we leave that for the reader’s
entertainment.

The generating function for the probabilities Q, reads

as
Q(/\)=i/\eQ1= / ldFFN_lexp MHy_1(F)]. (21)
£=0 0

Despite our ability to evaluate the integral in Eq. (20) we
have not been able to evaluate the integral in Eq. (21)
for general A\. But as we have already neglected terms of
subleading order in 1/N, we may continue to do so with
no further loss of generality. To this end we write F' =
1 —z/N, and observe that FV = exp(—z) + O(z?/N).
Consequently, the integrand in Eq. (21) is negligible un-
less £ ~ 1, and, to leading order in 1/N, we have for
Q()\), Qq, and its first moment p,:

oo
Q(}\) - N)‘_I/ dr e—:p—z\(Ein(z)—'yE)’ (22)
0
Q) =1, (23)
1 o]
Q= N_Z'/ dze *[InN + g — Ein(:c)]e
N 7 5 {(In N)‘ + O[(ln N)* 1]}, (24)
b= Q0 - R 1) =N + 4 1 o,
£=0
(25)
Here
(finite) __ o : —z++vg—Ein(z)
pi = [ dzx[ye—Ein(z)]e
0
=0.09913... (26)

is a constant that we have not been able to express in
terms of known constants. Our result for 4; — and for
u2 given in Eq. (34), agree with the two-digit numerical
results given in [5].

Equation (24) shows that to leading order in In N, Q,
is a Poisson distribution. This simple results has a simple
explanation: the Poisson distribution is obtained because
all adaptive walks terminate with essentially the same
fitness F. F belongs to an interval of width ~ 1/N at

F = 1. This is seen from our rewriting f dFFN-1 a5
(1/N) Jo dzexp(—z). Thus, in the interval [0,1], NFN -1
is almost a 6 function with support at FF ~ 1. If we
replace it with that in the formulas above, we arrive at a
Poisson distribution.

V. Q,’S POISSON BEHAVIOR

In this section we elaborate on Q,’s similarity with a
Poisson distribution, and compare it with such distribu-
tions for various values of N.

With the notation

<-->=/O dFg(F)- -, (27)
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where
oo
g(F) =Y qe(F) = FN=1fn(P) (28)
£=0

is the probability density that an adaptive walk termi-
nates at a local fitness maximum with fitness F', we have
a positive measure on the fitness interval [0, 1]. Equation
(20) shows that this measure is normalized. We write
the integral in Eq. (21) in terms of this measure and
cumulant-expand it:

Q(A) = (eX~1HN-1)
= exp ((eo‘—l)HN"l — l)c)

=exp ((A —Dp1 + %()\ —D*HRX_1)e
O DR ) (29)

where the first cumulants are

(Hy-1). = (Hy_1) = p1 = ln N + 5% 4 o(N-1),

(30)
(H{_1),=((Hn-1—p1)?) =0.16733...+ O(N 1),
(31)
(HY_1), = ((Hy-1 — p1)®) = —0.08370... + O(N 1),
(32)
(Hy—1),=((Hn-1—p1)*) =3 ((Hn-1 — M1)2>2
=0.03815... + O(N 1), (33)

Here we have used that to leading order in 1/N these
expectation values receive contributions only from val-
ues of F obeying FF = 1 — z/N with z ~ 1, i.e., where
Hy_1(F) — p1 = vg — Ein(z) — uﬁﬁ"‘te). Consequently,
all cumulants beyond the first are ~ 1, while the first,
i1, is ~ In N. Neglecting cumulants higher than the first
in Eq. (29), we arrive at the generating function for a
Poisson distribution with the same mean, p1, as Q has:

0.3
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Q(A) = exp[(A — 1)) (34)

Figure 1 shows Q; against £ for N = 10, 100, 1000, and
10000 as open symbols connected by lines. The lines are
only meant to guide the eye. Q, was found by numer-
ical integration of the expressions for @, deriving from
Eq. (21). The values for the Poisson distributions with
the same mean values are shown as solid circles, which in
most cases fall within the open symbols. This agreement
is rather striking. It is not just due to the central limit
theorem making both @, and the Poisson distribution
well approximated by the same Gaussian distribution,
and hence by each other. This is illustrated in Fig. 1 for
the case of N = 10: the dashed line shows the Gaussian
distribution with the same mean and variance as Q, has.
Clearly, it does not approximate @, shown as open cir-
cles, as well as the Poisson distribution with the same
mean as Qg, shown as solid circles. In addition to that it
has non-negligible support for negative values of £.

We can also compare Q;’s moments, p,, with the mo-
ments of the Poisson distribution with the same mean,

H1:
g = (Hy_1) = In N + pffinite), (35)
po=p1 + (H%_|)e = u1 +0.16733..., (36)

p3=p1 + (H3_ e+ (HY_1)e = p1 +0.08363..., (37)

g =p1+ (Hy_y)e +3(p1+ (HY_1)e)® + (Hy_1)e
+(Hy_1)e
=p1 +0.16733... +3(pu; + 0.16733...)%2 + 0.12215... .
(38)

As expected from Eq. (29), we see that when we neglect
cumulants beyond the first, the nth moment, u,, de-
pends on the first moment, u;, as the nth moment of a
Poisson distribution does. We also see that this neglect
introduces an error of just a few percent in the moments
shown for N > 100. We expect this error to increase
with the order n of the moment u,, and know that it
decreases as 1/In N.

FIG.1. Q¢ vs £ for N =10 (o), 100
(V), 1000 (A), and 10000 (O). The
connecting dashed lines are only meant
to guide the eye. Poisson distributions
with the same mean values are shown
with the symbol e. In the case of N =
10, the Gaussian distribution with the
same mean and variance as Q. is shown
as a solid line.
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VI. ESTIMATING THE DURATION OF WALKS

Since we let the adaptive walk start out with fitness
F = 0, the probability Qo that it is at a local fitness
maximum at time ¢ = 0 after the first (uncounted) step
is

Qo =1/N. (39)

This is a rigorous result.

On the average and to leading order in 1/N, each step
taken, including the first, reduces 1 — F' by a factor 2.
Each step thereby doubles the probability that the ensu-
ing step will be the last, while it halves the probability
per unit of time that the next step is taken. Conse-
quently, the probability per unit of time for the walk to
terminate is constant during the walk. This means

1
Q: = > exp(—t/1). (40)
Using the exact result in Eq. (39), we have the estimates
t=N (41)
and
Qi = 5 exp(~t/N). (42

This last equation shows that NQ; remains a finite func-
tion of ¢/N in the limit N — oo, and its kth moment is
proportional to N*. In particular, we see that the stan-
dard deviation

o(t) =N (43)

scales like the average f. This is in contrast to the scal-
ing laws found for the average length of walks and its
standard deviation.

In the next section we show how this section’s esti-
mates are modified when we account properly for fluctu-
ations and their correlations.

VII. THE DURATION OF WALKS

Let pe,a;¢(F') denote the probability that an adaptive
walk at time ¢ has proceeded ¢ steps, thereby reaching a
point in configuration space having fitness F and M less-
fit neighbors. The time evolution of pg ar,:(F') is found as
follows. As above, we neglect the fact that an adaptive
walk cannot intersect itself or any site that was previ-
ously probed by its evolution and discarded for being less
fit. As explained in the Appendix, this is a leading or-
der approximation in an expansion in 1/N. Within this
approximation, but explicitly forbidding back-tracking,
De,m;t(F)’s development in time is given by

peMp+1(F) = %Pe,M;t(f) + By—1,N-1(F)®p_1.:(F),
(44)

where

F
@eu(F) = [ dF g (F) (45)
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and
1 & M
bt (F) = 1—F A;g (1 - ﬁ) pe, it (F). (46)

Equation (44) expresses that an adaptive walk has length
£, fitness F', and number of less-fit neighbors M at time
t+ 1 for one of two mutually exclusive reasons: it was ei-
ther characterized by these values at time ¢, and took no
step between time ¢ and time ¢ + 1 — this happens with
the probability given as the first term on the right-hand
side in Eq. (44) — or a step was taken between time ¢
and time t 4 1, and the adaptive walk arrived at values
(¢, F, M) with that step — this happens with the proba-
bility given as the second term on the right-hand-side of
Eq. (44). ®,_1,+(F) is the transition probability density
at time ¢ to fitness F' from less-fit one-mutant neighbor
configurations arrived at in £ — 1 steps. It is an integral
over F' < F of ¢g—1,¢(F’), the transition probability den-
sity at time ¢ from fitness F’ arrived at in £ — 1 steps to
any more-fit one-mutant neighbor configuration.

A configuration with fitness F, arrived at from a less-
fit configuration, will have a total of M less-fit neighbor
configurations, when M — 1 of the N — 1 new neighbor
configurations are less fit. This happens with binomially
distributed probability,

Buorwa(F) = (3 1) F¥a-p%H, )

when we treat the landscape’s quenched randomness as
if the one-mutant neighborhood of any configuration ar-
rived at is “annealed,” thereby allowing the adaptive
walk to self-intersect, with the exception that back-
tracking remains forbidden.

As initial condition for Eq. (44) we choose as before,
with no essential loss of generality, to let the adaptive
walk start out in the least-fit configuration, at a time that
is chosen to be —1 for notational convenience. We let £
denote the number of steps taken in excess to the first
step, which is always taken. Then the initial condition
reads as

PeM;—1(F) = 6¢,—1 6,0 6(F). (48)

Inserted in Eq. (44), this initial condition gives the equiv-
alent initial condition

Pe,p;0(F) = By—1,n—1(F) 8g,0. (49)

Again our rather eccentric choice of initial condition as-
sures that the walk has a predecessor at t = 0, as at all
later times. This makes formulas look simpler.

The simpler Eq. (2) is contained in Eq. (44): the prob-
ability that an adaptive walk reaches length £ and fitness
F at time t is ®¢_1,;—1(F). Consequently, the probabil-
ity that it reaches length ¢ and fitness F' at all, denoted
pe(F) in Sec. IV, is

pe(F) = ®p_14-1(F) for £2>0. (50)

t=0

Using this with Eq. (44), one obtains an equation for
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pe(F), Eq. (2).

Equation (44) is a linear integro-difference equation.
The fact that it is nonlocal in F' does not prevent its
solution, since it can be made local by appropriate dif-
ferentiation after F'. Introducing the generating function

=D N> poma(f) (51)
£=0 t=0

and the corresponding generating functions for transition
probability densities

pm (A Fi7)

b\ F;7) = Z(l —M/N)pu(\ Fim)  (52)
F =
and
~ F ~
O\ F;7) = / dF' ¢(\, F';7), (53)
0
the initial condition, Eq. (49), reads as
Dm (A F;0) = Byr—y,n-1(F) (54)
and Eq. (44) itself, after a minor rearrangement, reads
o Fi7) = 3o Bar-1v-1(F)
P\ EST) = T f PM-LN-1
x [1 £ ArdO, F T)] . (55)
Consequently,
S\ Fi7) = hy (B3 )L+ Ar@(A\ Fi7)],  (56)

where we have introduced

1 N-M
hv-1(F57) =1—F N a7 BM-1v-1(F)
M=0 T
N-1
N -1
= ————Bp—1,n—2(F)
Fym N-—-™™M
N-1 1
— 9 L9 _ Y.
N_71— F2F1( N1172 N/TvF)
(57)

Here o F; is Gauss’s hypergeometric function. For later

use, we note that

Thy-1(1 —z/N;7) = (N — 1)x"1_N(T‘1_1)e_mfy

x(1+ Nt —1);z) + O(N™1),
(58)

where « is the incomplete v function. We shall also need
the function

F
HN(F;T)z—/O dF'hn(F';T) (59)

and make contact with Sec. IV by noting that
Hy(F;1) = Hn(F). (60)

For later use, we note that
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THy 1(1—z/N;(1+2/N)™)

—InN - $(1 +2) — v — I(;2) + O(N7Y),
(61)
when z ~ 1 and z ~ 1, and we have introduced
1 1-— e—m(l—y)
I(z; z) =/ dyy* ———— — ¥E, (62)
0 1-y
ZI(z;0) = Ein(z) — vE. (63)

Equation (56) is solved by
¢\, F;7) = hy_1(F;7)exp\rHy_1(F,7)],  (64)
and consequently

NBp_1,n-1(F)

P\ Fi7) = N — M

expAMTHn_1(F,7)].

(65)

In this result A only occurs multiplied by 7. This is be-
cause in the series expansion of this result each power of
A represents one step taken in configuration space by the
adaptive walk, and each such step takes one unit of time,
represented by one power of 7. Powers of 7 not occurring
in conjunction with A, on the other hand, represent time
steps during which the adaptive walk did not progress.

The relation between length and duration of adaptive
walks is contained in

1 N
pee = [ 4F 3 pracals) (66)
0 M=0
and therefore in

1 N
BN T) :/0 dF Y pu(X\ F;7)

M=0

- ) o

(67)
The generating function at time ¢t > 0,
oo
pr(N) =D Mpae, (68)
£=0
is obtained from p(\; ) via the relation
AN = o = § )
_ -1
271.2)\ f rt+2 ( )A 1) + O(N )
= SmxA)Bu “AMA+t+1)+ O, (69)

where the closed path of integration in the complex 7
plane encircles 7 = 0 once in the positive direction. Using
Cauchy’s theorem, the last identity was established by
moving the path to lie along the integrand’s branch cut
on the real axis, 7 > 1. The function B(z,y) is the beta
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function, Euler’s integral of the first kind. Notice that
the normalization condition

oo
= Zpg;t =1 forallt>0 (70)
£=0

Z109)

is satisfied by the result in Eq. (69). The same result
gives, to leading order in 1/N, that

(@)= ZEp D _ gt +2) 495 -1
= lnt +98 -1+ O(t"l) (71)
and
_ B Ly
o) =(B)— D =9t +2)+rB+ ) =
k=1
=Int+vg +72/6+ O(t™"). (72)

Thus we see our estimate confirmed: the average length
of an adaptive walk grows logarithmically with time. Fur-
thermore, we see that the variance of the length grows
like the average length, like for a biased random walk.
This similarity is no coincidence, since the adaptive walk
in many respects resembles a simple, biased random walk.

In the last identity in Eq. (67) it was tacitly assumed
that N itself was the only quantity of order N. Conse-
quently, the time dependence found from this identity is
reliable only when ¢ is far from being of order N. This
restriction needs not prevent ¢ from being large and the
asymptotic forms in Eqgs. (71) and (72) from being valid.

When t ~ N, walks reach local maxima and termi-
nate, according to our estimate for their duration. This,
of course, is an average result. For example, there is a
probability ~ 1/N that an adaptive walk terminates al-
ready after its first step. Now let us substantiate the
estimate: the probability that a walk terminates with
length £ and fitness F' at time t is

qet(F) = pe,n;e(F) — pe,N;e—1(F). (73)
Contact is made with Sec. IV by observing
o0
= _aee(F) = Jim pene(F). (74)
t=0
‘We introduce
1
Qee= [ dF axe(F) (75)
0
and
~ o0 oo
QNT) =D A Qe (76)
=0 t=0
and have

_ 1
QT =(1- '7')_/0 dFpN(\ F;7)

1
= / dFFN-1 expA\THyN_1(F;7)]
0

=e MWD HE F(N; 2) + O(NTY),  (77)

where Eq. (65) was used in the second identity, and F =
1-z/N, 7= (1+2/N)"1, z,2 ~ 1, in the third. We
have introduced the N-independent function

o0
F(N z)——-/ dz e~ (=2), (78)
0

Equation (77) is the time-dependent extension of
Eq. (21). From the generating function in Eq. (77) we
derive the average time it takes for an adaptive walk to
reach a local maximum:

Z =

(1 1)

< N1 (F; 1>+3H” L(F; 1)>
< " Z Re: M)?BM*’”‘Q(F’)>

= (F - —(1 0)) +0(1)

=1.22398...N + O(1), (79)
- 2 2
t2 — 12 = N2 (2((3) + %7]2:(1;0) - (%%) (1;0))
+O(N) (80)
=1.71788...N? + O(N), (81)

where ¢ is Riemann’s zeta function. We have not been
able to relate the derivatives of F in these equations to
known mathematical constants.

Comparing this section’s results with those of Sec. IV,
we notice a big difference between the length and the du-
ration of adaptive walks in a random fitness landscape:
while typical lengths are relatively closer to the average
length, the larger the system size N is, typical durations
can differ from the average by an amount the size of this
average. This picture is confirmed by the following ex-
pression for Q;, the probability that a walk has duration
t:

1 dr =~
%}{T—g—tQ(l;T)
f dz e®*~¥(+2)=78 F(1; 7). (82)

Q=

27er

Here the closed path of integration in the complex 7 plane
encircles 7 = 0 once in the positive direction, while a sim-
ilar path of integration in the complex 2 plane, obtained
by the substitution z = N(77! — 1), has been moved to
lie along the negative real axis. That is, the only place
in the z plane where F(1; z) is not analytic. We have not
found a more closed analytical expression for Q; in the
large-N limit than Eq. (82). Equation (82) suffices, how-
ever, since it shows that for /N ~ 1 we have Q; ~ N1,
Hence, in the limit N — oo, NQ; is a finite function of
the variable ¢/N. We have found this function numer-
ically. Its graph is shown in Fig. 2 as the fully drawn
line. The dashed line shows the graph for the estimate
in Eq. (40) with the exact value in Eq. (79) used for ¢.
From the figure it seems that for t/N > 1, Q; is essen-
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0.01
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3
t/N
FIG.2. NQ:vst/N for N = oo. Fully drawn curve: exact

result from Eq. (82). Dashed curve: estimate from Eq. (40)
with the exact value for { taken from Eq. (79).

tially an exponential function, or at least exponentially
bounded, though other possibilities cannot be eliminated
on the basis of the figure.

VIII. CONCLUSIONS

We have obtained rigorous results to leading order in
1/N for the length and duration of adaptive walks in an
N-dimensional binary genome space equipped with a ran-
dom fitness landscape, a special case of Kauffman's NK
model. We found the average length scales as In N and
so does the variance of the distribution of lengths. We
have also obtained analytical expressions for the prefac-
tors in these scaling laws, and found that to leading order
in 1/InN, lengths are Poisson distributed.

For the duration of adaptive walk, we found qualita-
tively different results. While the average duration is
proportional to N with a constant of proportionality we
have found analytically, the variance of the duration is
proportional to N2, again with analytically known co-
efficient. So while typical lengths of adaptive walks are
relatively close to their average, typical durations vary
over a range with magnitude equal to their average. We
extended this result by showing analytically that in the
limit N — oo, t/N has a finite distribution. Numer-
ically, we found this distribution falls off exponentially
for t/N > 1.

This quantitative, analytical understanding of the
stochastic, adaptive dynamics of isolated species in a ran-
dom fitness landscape permit us to find the dynamical
phase structure of coevolving species of the same kind.
This is the subject of the accompanying article.
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APPENDIX

In this appendix we argue that if the dimension N of
configuration space is sufficiently large compared to the
length of a finite path in that space, we cannot distin-
guish, to leading order in N, between the path of a ran-
dom walk and the path of an adaptive walk in a random
fitness landscape.

Assume that the dimension N of configuration space
is much larger than the length of adaptive walks in that
space. Then we can neglect the fact that the adap-
tive walk avoids itself and all configurations previously
probed by it. The reasoning goes as follows: Since muta-
tions occur on random genes, a step is added to the walk
by probing random directions in configuration space, un-
til one leading to higher fitness is found. Then the walk
is extended one step in that direction, and the procedure
repeated from the new position in configuration space.
By this algorithm, correlations between successive direc-
tions chosen by the walk are of order 1/N. So to lead-
ing order in an expansion in 1/N successive directions
are uncorrelated, and we have a random walk at hand.
Successive directions are also different to leading order.
Consequently, if the length of the walk is much smaller
than v/N, all directions chosen by it are different, and it
obviously does not self-intersect [15].

By assuming that the adaptive walk never probes a
site in configuration space that it has probed before, we
found, in Sec. IV, that walks have length ~ In N, which
is much smaller than v/N for N large. We conclude that
our assumption that the walk is short compared to N is
self-consistent correct.

We may ask whether we can find all subleading terms
in an expansion in 1/N without knowing the entire his-
tory of an adaptive walk. The answer is negative.

An adaptive walk does not back-track, while a random
walk does with probability ~ 1/N per step. We can han-
dle a random walk without back-tracking analytically.
But back-tracking is not the only 1/N effect distinguish-
ing an adaptive walk from a random one, however. An
adaptive walk also forms no closed loops, and does not
visit sites in configuration space that were probed previ-
ously, but not visited for lack of fitness. Thus an adaptive
walk is not only self-avoiding, but also avoids many one-
mutant neighbors to itself. A short random walk visits
such sites with probability ~ 1/N. This is seen as follows.

Self-intersection by a random walk requires the forma-
tion of a closed loop by the walk, i.e., at least two steps,
of opposite orientation, must be taken in each dimension
in which the loop extends. So the probability for the for-
mation of a closed loop of length ¢ on a random walk
of length £ is, to leading order, suppressed by a factor
(¢ — £")/N¥/2 where £/ > 4. Nearest neighbors to the
walk can be visited in one step less, i.e., with probability
(¢—¢)/N¥/2=1 For ¢ = 4 this probability is ~ £/N. So
to leading order in 1/N we can treat the adaptive walk
as a random walk. We can also treat it as a random
walk without back-tracking, thereby describing some of
the 1/N effects at play. But a full description of 1/N
effects requires more information than the walk’s current
position in configuration space.



46 EVOLUTION IN A RUGGED FITNESS LANDSCAPE

In summary, to leading order in 1/N we may add a
step to the adaptive walk by treating the one-mutant
neighbors to the current configurations as if they had
never been visited or probed before. Consequently, the
probability that M of these N neighbors are less fit than
the current configuration is binomial, Bas, n(F), where
F is the fitness of the current configuration. If we take
into account that the previous configuration is known to
be less fit, the probability is Bas—1 n—1(F'), as given in
Eq. (47).

When we forbid back-tracking, our treatment is exact
for a configuration space which is a Cayley tree with co-
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ordination number N. It should not be confused with
an “annealed” fitness landscape, as an approximation to
the “quenched” landscape we start out with. Not if “an-
nealed” means rechoosing the fitness of a configuration
every time it is probed by the adaptive walk. If we did
that we would have no maxima, since a higher fitness
could always be attained by sufficiently many trials. The
picture of an “annealed” fitness landscape applies only in
the sense that the fitnesses of all N (or N — 1) neighbors
to a configuration are rechosen every time that configu-
ration is visited, and kept fized during the visit, thereby
possibly making the visit permanent.
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