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Abstract
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� Introduction

In ���� Parisi proposed a scheme for replica symmetry breaking which led to a con�
tinuously distributed set of order parameters fq�x�� � � x � �g for the replica sym�
metry breaking phases of spin glasses 	Parisi �����a�
� This breakthrough came at the
end of a number of investigations into the possible forms of replica symmetry breaking
	Almeida and Thouless ������ Blandin ������ Bray and Moore ������ Parisi �����b�
�
Although Parisi acknowledged 	Parisi ������
 that his scheme was justi�ed mainly by
its ability to reproduce numerical simulations no further theoretical justi�cation for
the scheme seems to have been brought forward since then �see for example reviews in
	Binder and Young ������ Mezard et al ������ Fischer and Hertz ������
��

In this paper certain aspects of the theory of �nite permutation groups is used
to investigate the question of uniqueness of the Parisi prescription for replica symme�
try breaking� The theory of �nite groups is a vast subject with most of the modern
literature formulated in almost impenetrable mathematical notation� The older text
books 	Burnside ������ Carmichael ������
 and some of the modern 	Gorenstein ������
Kargapolov ������
 are more accessible� For the present study the most useful presen�
tation of the theory of �nite permutation groups is found in 	Wielandt ������
 and in
the discussion of wreath products by 	Kerber ������
�

Group theoretical concepts such as single and double transitivity transposition sym�
metry and primitivity are shown to be of major signi�cance for the analysis� The most
important property is however that of extensibility which roughly speaking means that
a model for replica symmetry breaking valid for a given �nite set of replicas can be
extended to a model valid for larger �nite set of replicas without changing the structure
of the original model� In the simplest case this property leads uniquely to the Parisi
scheme�

A preliminary account of the results of this paper was previously given in a set of
lecture notes 	Lautrup ������
� The level of the present paper is aimed at readers that
are not experts in group theory and the paper is therefore reasonably self�contained�
The presentation is however not complete in the mathematical sense but introduces
only those concepts and proves only those results that are necessary for understanding
the arguments�

In section � replica theory is reviewed and presented in order to establish notation�
In section � we introduce permutations and discuss in section � the relation between
symmetry breaking solutions and permutation groups� In section � the concept of simple
transitivity is introduced and after a discussion of transposition symmetry and the
reasons for it in section � the important concept of double transitivity is de�ned in
section �� In section � an algebraic basis for double transitivity is established and in
section � the concept of extensibility is de�ned in terms of this algebra and shown to
lead to the Parisi scheme� In section �� we analyze the consequences of primitivity and
consider alternative schemes �elaborated in appendix A�� Finally section �� contains
the conclusions�
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� Replica theory

The use of the replica method in the theory of spin glasses goes back to the famous paper
by 	Edwards and Anderson ������
� Generically one considers a system with N compo�
nents �spins� described by a state vector S� The energy of the system E�S� J� is charac�
terized by a set of parameters J and in the canonical SK�model E�S� J� � �

P
i�j JijSiSj

	Sherrington and Kirkpatrick ������ Kirkpatrick and Sherrington ������
� The ther�
modynamics of such a system in equilibrium with a heat bath is described by the par�
tition function Z�J� �

P
S exp���E�S� J�� where � � ��T is the inverse temperature�

The free energy per spin is de�ned as f�J� � � T
N
logZ�J� and is supposed to take a

de�nite value in the thermodynamic limit N ���
The values of the parameters J are assumed to be subject to noise and distributed

according so some probability distribution P �J� and we denote averages over this dis�
tribution by � � � � �� In the SK�model the noise is uncorrelated uniformly Gaussian
with mean � Jij �� ��N and variance � �Jij � ��� �� ���N � The quantity de�
termining the average thermodynamics of the system is consequently the average free
energy f �� f�J��� The calculation of the average presents a mathematical problem
because of the logarithm� It was proposed by 	Edwards and Anderson ������
 to use
the formal trick of writing � logZ�J� �� limn���� Z�J�n � ����n thus recasting
the problem in the form of determining an analytic expression in n for the average
� Z�J�n � in the limit of n� ��

For integer n � � it is easy to construct an expression for this quantity

Z�J�n �

�
� nY
a��

X
Sa

�
A e��

P
n

a��
E�Sa�J� ���

Physically this is the partition function for a system of n identical non�interacting repli�
cas of the original system in contact with the same heat bath� The averaging over
the noise in the couplings between the spins leads however in the end to an e�ective
coupling between the replicas�

In the SK�model it is possible in the thermodynamic limit to derive a supposedly
exact mean �eld theory for the replicated system �see also 	Amit et al ������
�� The
free energy becomes for �nite integer n

f�m� q� � �
���

�
�

�

�n

X
a

m�
a �

���

�n

X
a�b

q�ab �
T

n
logZ�m� q� ���

where Z�m� q� is the following partition function for a single replicated spin

Z�m� q� �

�
�Y

a

X
Sa

�
A e��Pa

maSa�����
P

a�b
qabSaSb ���

and where ma and qab are thermodynamic �order� parameters� Notice that we have
taken the limit N �� for arbitrary �nite n whereas a strict application of the replica
trick would require that n� � �rst�
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The order parametersma and qab may be interpreted as the average magnetization in
the replicas and the average state vector overlap between replicas� Although the matrix
elements of q are used only for a � b we extend the matrix naturally by requiring it to
be symmetric �and setting the diagonal elements to ��� With this extension it is clear
that the free energy is invariant under any permutation of the replicas�

The physical values of the order parameters are determined by the requirement that
the free energy be extremal� This leads to the following equations of stationarity �also
called the mean �eld equations�

ma � � Sa �

qab � � SaSb �

���
�� ���

where the brackets � � � � � refer to averages over the system de�ned by the single spin
partition function ���� The stability of the solutions may be determined from the second
derivatives of the free energy�

The symmetry of the free energy with respect to all permutations does not imply that
the solutions to the mean �eld equations are also symmetric� They may spontaneously
break the permutation symmetry� Nevertheless the �rst and most natural guess for the
form of the solutions is that it is replica symmetric i�e� ma � m and qab � q� In that
case the free energy becomes an analytic function of n which may be evaluated in the
limit of n� � 	Sherrington and Kirkpatrick ������
� When the stability matrix is also
be evaluated around the symmetric solution the result is 	Almeida and Thouless ������

for ma � � that the replica symmetric spin glass solution is everywhere unstable�

The instability of the symmetric spin glass solution necessitates the introduction
of broken replica symmetry� Various special forms that this breakdown can take may
be guessed 	Bray and Moore ������
 but it was Parisi who �rst constructed a general
formalism for the breakdown 	Parisi �����a�
� It was based on a special ansatz for the
form of qab which in the end permitted the approach to the limit n� ��

Let mi� i � �� 	 	 	 � I � � be a set of integers �not to be confused with ma� such that
m� � � and mI�� � n and such that the ratios mi���mi are all integers greater than ��
If we denote the integer quotient of two integers by 	x�y
 then the Parisi ansatz takes
the form �when the replicas are numbered from � to n � ��

qab � qi if 	a�mi
 �� 	b�mi
 but 	a�mi��
 � 	b�mi��
 ���

where the qi are real numbers� In this way one may characterize the breakdown of replica
symmetry in the spin glass phase by a set real numbers qi� De�ning the piecewise
constant function q�x� � qi for mi � x � mi�� on the interval � � x � n then
the �limit� of n � � which is approached through I � � this function �becomes� a
continuous function on the unit interval � � x � ��
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� Permutations

A permutation 
 is a mapping a� 
�a� of the set A of n � jAj replicas onto itself� The
group of all permutations of n objects is called the symmetric group of degree n and
denoted Sn� The number of group elements is called the order of the group and is n�
for Sn� The alternating group consisting of all even permutations is denoted An and is
of order n����

In the following we use standard mathematical notation and write permutations
as products of independent cycles� A cycle of length k is denoted �a�a�a� � � � ak� and
corresponds to an operation whereby a� is replaced by a� a� by a� and so on until ak
is replaced by a�� Trivial cycles of length one may be omitted� The identity element
������ � � � �n� is denoted ��

The �rst non�trivial symmetric group is S� � f�� ����g� It has two elements� the
identity and a simple transposition but contains no proper subgroups� The �rst group
containing proper non�trivial subgroups is S� � f�� ����� ����� ����� ������ �����g� This
group has three subgroups each isomorphic to S� consisting of the identity and one of
the cycles of length � and one further subgroup consisting of the identity and the two
cycles of length �� We shall take a number of examples from S	 which has �� elements
falling into � classes with di�erent cycle structure� They are� �� the unit � �� the
� transpositions �ab� �� the � double transpositions �ab��cd� �� the � cycles �abc� of
length � and �� the � cycles �abcd� of length ��

The fundamental representation of the symmetric group associates an n	 n matrix
g � g�
� de�ned by gab � �a��b� with any permutation 
� The representation is faithful
orthogonal �g�g � �� and behaves in every respect like the symmetric group itself�

Every abstract �nite group is isomorphic to at least one permutation group because
the abstract group multiplication table simply expresses how each element permutes all
elements among each other� But there are actually many faithful ways for an abstract
group to be represented by permutations� Most of the properties we shall discuss in the
following for example transitivity are speci�c to permutations and not in general valid
for abstract �nite groups�

� Invariance

Let �m� q� be a set of values of the order parameters for a replicated spin glass and let

 be an arbitrary permutation� We then de�ne the transformed order parameters to be

m�
a � m��a�

q�ab � q��a���b�

The invariance of the free energy ��� means that it takes the same value before and
after the transformation� f�m�� q�� � f�m� q�� This of course implies that if �m� q� is a
solution to the mean �eld equations ��� so will every permuted set �m�� q���

�



In the general case some permutations will leave the solution unchanged whereas
others will change it� If all permutations leave the solution invariant it must be replica
symmetric i�e� ma � m and qab � q� Otherwise the solution is said to break the replica
symmetry spontaneously �i�e� without external provocation�� The set of permutations
G that actually leave a given solution invariant must satisfy

ma � m��a�

qab � q��a���b�

���
�� ���

for all 
 
 G� In terms of the fundamental representation we have m � gm and
g�qg � q for every g 
 G� This set of permutations obviously constitutes a subgroup of
the symmetric group Sn�

Every solution to the mean �eld equations may be characterized by the corresponding
invariance group� The replica symmetric solutions are for example invariant under the
full symmetric group� Conversely for any subgroup G of the symmetric group there will
be a class of solutions to the mean �eld equations which is invariant under this group� As
the sum or product of invariant matrices is again invariant the class of overlap matrices
q corresponding to a given invariance group forms a ring called the centralizer ring of
G consisting of all those matrices q that commute with all elements g of the group�

Consider for example the subgroup f�� ����g of S�� The most general solution to
the mean �eld equations invariant under this group has m� � m� � m and an overlap
matrix q of the form

�
B� q� q� q�

q� q� q�
q� q� q	

�
CA or just

�
B� � � �

� � �
� � �

�
CA ���

where m and qi are arbitrary real parameters� This matrix is generically asymmetric
and we need to choose q� � q� �in shorthand ���� in order to enforce the symmetry�
Notice that when displaying the structure of an overlap matrix it is su�cient and much
clearer just to write down the indices of di�erent parameters�

Another example is the subgroup A� � f�� ������ �����g of S�� Here we have m� �
m� � m� � m and the most general invariant q�matrix takes the form

�
B� � � �

� � �
� � �

�
CA ���

In this case enforcement of the symmetry implies that � � � and consequently the
matrix becomes completely replica symmetric i�e� invariant under S��
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� Simple transitivity

One of the important concepts in the theory of permutation groups is that of transitiv�
ity� Two replicas a and b are said to be connected in the invariance group G if there
is a permutation 
 
 G such that b � 
�a�� Obviously this relation of connectedness
is an equivalence relation which divides the set of replicas A into k disjoint equiva�
lence classes A�� A�� 	 	 	 � Ak called orbits� Inside each orbit the replicas are connected
whereas there is no connection between replicas belonging to di�erent orbits� If there
is only one orbit �i�e� k � �� the invariance group G is said to be �singly or simply�
transitive otherwise it is intransitive� In the two examples above the invariance group
of ��� is intransitive whereas that of ��� is transitive�

��� Intransitive groups

In an intransitive group every permutation acts separately on each orbit such that we
can write 
 � �
�� 
�� 	 	 	 � 
k� where 
i is a permutation acting on Ai only� These per�
mutations form by themselves a transitive group Gi of degree jAij called the transitive
projection of G on Ai� The original group G is therefore equal �or isomorphic� to a sub�
group of the direct product of each of its transitive projections G � G��G�� 	 	 	�Gk
also called a subdirect product� Consider for example the group G � f�� ��������g of
degree � which is intransitive with two orbits A� � f�� �g and A� � f�� �g� The cor�
responding transitive projections G� � f�� ����g and G� � f�� ����g are in both cases
isomorphic to the symmetric group S�� The product G��G� � f�� ����� ����� ��������g
is isomorphic to S� � S� and contains G as a subgroup�

From the invariance property ��� we see that all replicas in the same orbit have the
same magnetization i�e� ma � mi for a 
 Ai where the mi are arbitrary parameters�
This is the most general form of the magnetization for an intransitive invariance group
with k transitive projections� Notice that the direct product of the projections leads to
the same result�

Similarly the overlap matrix q decomposes into k� submatrices qij corresponding to
the direct products of two orbits Ai�Aj� Each diagonal submatrix qii is invariant under
the transitive projection Gi whereas the o��diagonal �generally non�square� submatrix
qij with i �� j is invariant under a subgroup of the direct product Gi � Gj � If the
o��diagonal matrix is invariant under the direct product itself then all matrix elements
must be equal because all combinations of permutations on Ai with permutations on
Aj will be allowed� This is illustrated by G � f�� ��������g  G� � G� for which the
overlap matrix takes the asymmetric block form

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA ���

If instead G � G� �G� we must also have � � � and � � ��
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��� Transitive groups

For a transitive group we have ma � m for all a� Similarly the diagonal elements qaa are
all equal� Notice that transitivity does not mean that all the replica overlaps qab are
equal only that each row �or column� is a permutation of any other row �or column��
This is illustrated by the permutation group f�� ��������� ��������� ��������g of degree
� which is clearly transitive� The overlap matrix takes the form

�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA ����

In this case the invariance group forces the matrix to be symmetric in contrast with the
intransitive case ����

Parisi used the condition that the sum over each row
P

b qab be independent of
the row index a to guide the derivation of the form of his ansatz for replica symmetry
breaking 	Parisi ������
� Since simple transitivity implies that each row is a permutation
of any other his condition is a consequence of transitivity�

� Transposition symmetry

In the preceding sections the question of the symmetry of the overlap matrix under
transposition of rows and columns has surfaced several times� In the examples ��� ���
and ��� the generic overlap matrix is asymmetric whereas in ���� it is symmetric� It is
also clear that it is not the transitivity that enforces symmetry because ��� and ����
are both transitive� In the example ��� we also saw how the requirement of symmetry
changed the actual invariance group�

We shall now investigate the consequences of demanding that the invariance group
enforces transposition symmetry of the overlap matrix� Such a group will be called a
symmetrizing group and should be distinguished from the symmetric group Sn containing
all permutations of n objects�

The necessary and su�cient condition for an invariance group G to be symmetrizing
is that to every pair of replicas a and b there must exist a permutation 
 
 G which
transposes the pair i�e� for which 
�a� � b and 
�b� � a� Thus the permutation must
be of the form 
 � �ab�� with � neither a�ecting a nor b�

The group generated by all transpositions is uninteresting and trivially equal to Sn
because every permutation can be written as a product of transpositions� The sim�
plest example of a non�trivial symmetrizing invariance group is furnished by the group
f�� ��������� ��������� ��������g giving rise to ����� Another is the ��th degree group
f�� ����� ����� ��������� ��������� ��������� ������� ������g which has an overlap matrix of
the form

�



�
BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA ����

It follows immediately that a symmetrizing invariance group is singly transitive

because for any pair of replicas a transposing permutation will connect the replicas�
Whereas a symmetrizing group is transitive the opposite is however not the case as
demonstrated by ���� On the other hand we may conclude that an intransitive group
cannot be symmetrizing for if this were the case it would be transitive�

A very important consequence is also that a symmetrizing invariance group forces

all invariant matrices to commute with each other because the commutator of two
symmetric matrices is an antisymmetric invariant matrix which must vanish due to the
enforced symmetry of all invariant matrices� The centralizer ring of overlap matrices in
a symmetrizing group is thus commutative�

We shall in the following assume that G is a symmetrizing invariance group and
therefore singly transitive although many of the general arguments could be carried out
even if this were not the case� This means that all magnetic replica values are equal
�ma � m� in what follows and the discussion will only focus on the overlap matrix q�
The assumption that the invariance group enforces symmetry is very strong and permits
us to perform a great amount of analysis�

� Double transitivity

The permutation a� 
�a� of the n replicas induces a permutation �a� b�� �
�a�� 
�b��
of the n� pairs of replicas� The permutation group G of degree n therefore induces
another permutation group of degree n� which we shall call �G� It consists of all diagonal
pairs of permutations �
� 
� with 
 
 G and is a subgroup of the direct product G�G�
Since �G is trivially isomorphic to G its abstract group properties are the same but
the two groups are represented di�erently in terms of permutations�

Let us denote the orbits of �G by T�� T�� T�� 	 	 	 � TI � Each orbit consists of a set of
pairs connected by permutations 
 
 G� Since G is assumed to be singly transitive
all diagonal pairs �a� a� form a single orbit �here called T�� by themselves� For n � �
the o��diagonal pairs will be distributed among the other I orbits� If there is only
one o��diagonal orbit �I��� then G is said to be doubly transitive� This case is rather
uninteresting because it implies that all o��diagonal pairs have the same q�value and
consequently that the mean �eld solution is replica symmetric� There are many proper
subgroups of the symmetric group that are doubly transitive for example the alternating
group� In order to �nd a non�trivial solution that breaks replica symmetry we must
require that there is more than two non�trivial pair orbits �I � ���

Inside each orbit Ti the matrix elements of q are all equal i�e� qab � qi for all �a� b� 

Ti� Consider for example the symmetrizing invariance group of ����� It has � non�trivial
pair orbits namely T� � f��� ��� ��� ��� ��� ��� ��� ��g T� � f��� ��� ��� ��� ��� ��� ��� ��g and
T� � f��� ��� ��� ��� ��� ��� ��� ��g and thus the class of solutions ���� is described by �
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non�trivial parameters q� q� and q�� In the case ���� there is only two non�trivial pair
orbits�

Let ni be the number of times that qi occurs in the �rst row of q� Obviously n� � �
and

P
i ni � n� The transitivity of G then guarantees that each row of the q�matrix

must be a permutation of the �rst and thus contain each qi exactly ni times� Thus
the number of pairs in an orbit is jTij � nni� The assumed transposition symmetry
guarantees that if �a� b� 
 Ti then �b� a� 
 Ti too� Hence the number of pairs nni is
even in a non�trivial orbit which means that n and ni cannot both be odd�

The numbers ni also have another meaning� Let Ga be the stabilizer group of a
consisting of all those permutations in G that do not a�ect a i�e� Ga � f
 
 Gj
�a� �
ag� It then follows that independently of a this group is intransitive with I � � orbits
numbered i � �� �� 	 	 	 � I of size ni�

��� Parisi�s integral notation

Using these results we may express the term quadratic in the spins in ��� in terms of
the non�trivial qi�s X

a��b

qabSaSb �
X
i��

qi
X

�a�b��Ti

SaSb

which only depends on the spin�spin products over all pairs in each non�trivial orbit�
One may even introduce a special integral notation �rst invented by 	Parisi �����a�
�

De�ne the integers mi by

mi �
X
j�i

nj

for i � �� �� 	 	 	 � I �� so that m� � � and mI�� � n� Then de�ne the piecewise constant
function on the interval � � x � n by

q�x� � qi for mi � x � mi��

Using this trick we �nd for any function f�qab�

�

n

X
a��b

f�qab� �
X
i��

nif�qi� �
Z n

�
dx f�q�x��

which may be used to evaluate the quadratic term in the free energy ���� It has a
suggestive �limit� for n� ��

Notice that the integral form is exact and arises without any assumptions about the
group except that it is symmetrizing� It does however introduce an ordering of the
pair orbits re�ected in the order on the interval � � x � n� But since there seems to
be no natural order of the orbits the function q�x� is at this point devoid of content� A
renumberering of the non�trivial orbits would lead to another function� If the integral
notation is to be taken seriously it is necessary to introduce an order among the pair
orbits� We shall see below that the principle of extensibility does exactly that�
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� The natural basis

We shall now establish an algebraic basis for dealing with the orbits of pairs Ti� For
each such orbit we de�ne a characteristic matrix �denoted by the same symbol�

Ti�ab �

	
�� if �a� b� 
 Ti
�� otherwise

This matrix is symmetric and invariant� The single transitivity of G implies that there
is the same number ni of ��s in each row of this matrix�

��� Algebraic properties

From the disjoint nature of the orbits and the transposition symmetry we �nd that these
matrices are orthogonal

�

n
tr �TiTj� � ni�ij ����

and form a natural basis for the centralizer ring

q �
IX

i��

qiTi ����

where qi is the value taken by q in Ti also called the coordinate of q along the i�th axis�
The fact that all invariant matrices form a ring implies that the sum and product of

two invariant matrices is again invariant� Hence the natural basis constitutes a closed
algebra

TiTj �
IX

k��

ckijTk ����

where the coe�cients ckij are the structure constants of the algebra� From this de�nition
and the disjoint nature of the basis matrices it follows that

ckij � �TiTj�ab for all �a� b� 
 Tk ����

which shows that the structure constants are non�negative integers� In fact they are
equal to the number of common occurrences of ��s in the a�th row of Ti and the b�th
column of Tj which is never greater than the smallest of ni and nj� Since the matrixP

j Tj has all elements equal to � we �nd the sum rule

IX
j��

ckij � ni ����

��



From the orthogonality ���� and the fact that all invariant matrices of a symmetrizing
invariance group commute we conclude that the symbol

dijk �
�

n
tr�TiTjTk� � ckijnk ����

is totally symmetric in all three indices and has the smallest common multiple of ni nj
and nk as a factor�

��� Diagonalisation

The set of commuting symmetric basis matrices Ti of a symmetrizing invariance group
may be diagonalized simultaneously� Thus we look for solutions u to

Tiu � iu

for all i � �� �� 	 	 	 � I� One eigenvector may immediately be constructed namely the one
with ua � � for all a which has eigenvalues ni because there is ni ��s in each row� More
generally there will be a set of eigenvalues 	i indexed by �� Each set may be degenerate
and there will be a projection matrix E	 associated with the corresponding degeneracy
subspace satisfying

TiE	 � 	i E	

The eigenvalues of course satisfy the algebraic relations of the T �matrices

	i 
	
j �

X
k

ckij
	
k ����

The projection matrices are orthogonal and complete

E	E� � E	�	�P
	E	 � �

The degeneracy is determined by the dimension of E	

D	 � nd	 � trE	 ����

where we for later convenience have also de�ned the fractional dimension d	� The
transitivity basis matrices may be expanded in the eigenbasis �using the completeness�

Ti �
X
	

	i E	

��



Conversely the invariance of the basis Ti implies that a permutation cannot change
the eigenvalues but only permute the indices of the degenerate eigenvectors� Hence the
degenerate subspaces and thereby E	 are all invariant matrices that may be expanded
in the transitivity basis� Using ���� and ���� the coe�cients can be determined

E	 �
X
i

d	
ni
	i Ti

The two equations above are reciprocals of each other and the reciprocity implies that
the number of eigenvalues is exactly �� I� The eigenvalues themselves form orthogonal
systems

P
i
d�
ni
	i 

�
i � �	�P

	
d�
ni
	i 

	
j � �ij

���
�� ����

The special eigenvector ua � � which we shall associate with � � � and eigenvalues
ni only satis�es the �rst equation if d� � ��n� Since then D� � � this eigenvector is
non�degenerate�

The structure constants ���� are completely determined by the eigenvalues

dijk �
X
	

d	
	
i 

	
j 

	
k

For the symmetrizing invariance group ���� we have n� � n� � n� � � and the
algebra� T �

� � T �
� � T �

� � �� T�T� � T� T�T� � T� T�T� � T�� The eigenvalues become
in this case

f	i g �

�
BBB�

�ni � � � �

� �� �� �� ��
� �� �� �� ��
� �� �� �� ��
� �� �� �� ��

�
CCCA

��� Eigenvalues of the overlap matrix

The eigenvalues of an arbitrary overlap matrix may now be expressed in the form

Q	 �
X
i

	i qi

with the inverse relation

qi �
X
	

d	
ni
	i Q	

��



By means of the eigenvalues the trace of an arbitrary function of q may be evaluated

�

n
trf�q� �

X
	

d	f�Q	� ����

Only one eigenvalue can in the general case be simply expressed in terms of the qi�s
namely

Q� �
X
i

niqi � q� �
Z n

�
dx q�x�

with the inverse relation

q� � Q� �
X
	��

d	�Q	 �Q��

written in a way which avoids the explicit appearance of n�

	 Extensibility

The formulation in terms of integrals seems to suggest that it should be possible to
extend the formalism from a given value of n to a higher value n� � n by extending the
function q�x� into the region n � x � n� without changing it in the interval � � x � n�
This could be done if it were possible to extend the algebra with more basis elements
without disturbing the already existing algebraic relations� In the simplest case one
might try to add just one extra basis element at a time�

	�� The simply extensible algebra

This is formulated in the following way� We demand that the elements of the natural
basis for the centralizer ring of an invariance group can be ordered in such a way that
the members of the truncated set� T�� T�� 	 	 	 � Ti form a closed algebra among themselves

for all i � �� �� �� 	 	 	 � I� This implies that ckij � � for k � i� j i�e� if k is the largest
of the three indices� The symmetry ���� under interchange of indices then implies that
ckij � � if all indices are di�erent because one of them must be the largest� The only
non�zero structure constants are those where at least two indices are equal� Making use
of the sum rule ���� and the symmetry ���� we �nd cjij � ni for i � j cjii � ni for j � i
and ciii � ni �mi� Hence the algebra takes the beautiful form

TiTj � niTj for i � j

T �
i � �ni �mi�Ti � ni

P
j�i Tj

It is completely de�ned by the requirement of symmetry and closure of its truncated
parts� Since the number I does not appear explicitly it may also be characterized

��



as being extensible in the sense de�ned above so that new elements may be added to
the basis as long as the algebra closes after each new addition� Notice also that the
number of replicas n does not appear explicitly but only implicitly through mI�� � n�
The extensible algebra may in fact be viewed as spanned by an in�nite number of
commuting basis elements T�� T�� 	 	 	 where each truncated set consisting of the �rst I
closes algebraically on itself�

	�� Eigenvalues

The complete set of eigenvalues for this algebra is given by the �I ���	 �I � �� matrix

f	i g �

�
BBBBBBBBB�

�ni � � � � � � � I

� n� n� n� n� � � � nI
� n� �m� � � � � � �
� n� n� �m� � � � � �
� n� n� n� �m� � � � �
���

���
���

���
���

� � �
���

I n� n� n� n� � � � �mI

�
CCCCCCCCCA

����

It may be proven by induction on I that these are the correct eigenvalues� This matrix
is also extensible and does not refer to n and may be viewed as just the upper left
�I � ��	 �I � �� part of an in�nite matrix of the indicated form�

The rows are clearly orthogonal as required by ���� which also determines the de�
generacies

D	m	m	�� � nn	 �� � ��

or

d	 �
�

m	

�
�

m	��
�� � �� ����

Since the degeneracy D	 � nd	 must be integer for all � and since m� � � each m	

is a factor of n� The extensibility of the scheme requires furthermore that each m	 is a
factor of m	��� From this it follows that m	 is also a factor of n	� It is easy to verify
that the orthogonality ���� is also ful�lled�

From the eigenvalues ���� we may calculate all the eigenvalues of the q�matrix for
� � �

Q	 � �m	q	 �
X

��i�	

niqi

De�ning Q�x� � Q	 for m	 � x � m	�� we �nd for q� � � the relation

Q�x� � �xq�x� �
Z x

�
dy q�y�

��



Finally the trace over an arbitrary function ���� becomes

�

n
trf�q� � f�Q�� �

Z n

�

dx

x�
�f�Q�x��� f�Q���

	�� Parisi�s prescription

The algebra may be cast into an even nicer form by de�ning

Vi �
X
j�i

Tj for i � �� �� 	 	 	 � I � � ����

It then follows that

ViVj � miVj �i � j�

It is of course not possible to deduce the form of these matrices from their algebra
alone because an orthogonal transformation leaves the algebra unchanged whereas it
changes the matrices� But using that all the elements of the V �s have to be � or � �and
that VI�� is an n 	 n matrix of ��s only� it follows after a suitable renumbering of the
replicas that each Vi must be a block diagonal matrix with n�mi 	 n�mi blocks where
each diagonal block is an mi 	mi matrix of ��s and there is ��s everywhere outside the
blocks

Vi �

�
BBBB�

mi mi � � � mi

mi ��s ��s � � � ��s
mi ��s ��s � � � ��s
���

���
���

� � �
���

mi ��s ��s � � � ��s

�
CCCCA ����

Notice that these matrices may be considered to be truncated �nite upper�left parts of
in�nite matrices�

In other words when we number the replicas from � to n � �

Vi�ab �

	
�� if 	a�mi
 � 	b�mi

�� otherwise

where 	���
 means integer division� From ���� it then follows that

Ti�ab �

	
�� if 	a�mi
 �� 	b�mi
 but 	a�mi��
 � 	b�mi��

�� otherwise

��



which is the Parisi prescription as given in ���� The simplest non�trivial example of an
overlap matrix belonging to the Parisi scheme is furnished by �����

For the symmetrizing invariance groups the Parisi scheme is the only extensible one
leading to a complete ordering of the orbits of double transitivity� Any other scheme
must have �disorder� among the orbits in the sense that there is no way of ordering all
the orbits such that the product of Ti with Tj is always expandable in terms of Tk with
k � max�i� j��

	�
 The replication factors

The Parisi scheme depends on a set of integers mi with each successive integer being
a factor of the preceding one such that the ratio ri � mi���mi is an integer greater
than �� This ratio denotes the number of times the generic overlap matrix of dimension
mi	mi is replicated along the diagonal to create the generic overlap matrix of dimension
mi�� 	mi���

Without loss of generality one may choose these replication factors to be prime
because the generic overlap matrix for an invariance group with a non�prime replication
factor is a special case of the generic overlap matrix for the invariance group with
the corresponding prime replication factors� In other words the Parisi scheme is of
the largest generality i�e� contains the largest number of free parameters when all
replication factors are prime� Thus mi �

Q
j�i rj is simply the resolution of mi into

prime factors� The order of the prime factors is however important for the form of the
overlap matrix which is demonstrated by the two � 	 � matrices

�
BBBBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCCCA

and

�
BBBBBBBB�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
CCCCCCCCA

corresponding respectively to n � � � � and n � � � ��
Notice also that with this formulation the number of pairs in Ti at any level is

even as it should be according to the analysis in section � because the product mi��ni
contains both ri and ri � � as factors� The form of ���� shows that when the sequence
of replication factors r�� r�� 	 	 	 is given the Parisi scheme allows the construction of
symmetry breaking overlap matrices for all the intermediate n�values of the form kmi

with k � �� 	 	 	 � ri between the levels i and i � �� The allowed values for n are thus
n � r�� �r�� 	 	 	 � r�r�� �r�r�� 	 	 	 � r�r�r�� 	 	 	 and so on rather than the mi�s only�

In the following we shall see that the replication factors have a natural origin in the
structure of permutation groups�

��



�
 Imprimitivity

The structure of the Parisi scheme bears a deep relation to the fundamental group
theoretical concept of imprimitivity which we shall de�ne below� As was mentioned in
the beginning of the preceding section nothing tells us how to order the transitivity
basis but an order seems crucial for the meaningful introduction of a function q�x�
which can be extended to higher values of n� There are as we shall see good reasons
to demand that all the invariance groups should be imprimitive �if at all possible� and
this leads naturally to extensible in�nite sets of invariance groups similar to the Parisi
scheme� As argued above none of these other schemes can however lead to a complete
ordering of all the basis elements�

���� De�nition of primitivity

The concept of primitivity arises from the behaviour of permutations when acting on
subsets of the replicas� A subset B � A of replicas is called a block if every permutation

 
 G either maps it completely onto itself �
�B� � B� or completely into its comple�
ment in A �
�B� � B � ��� There are of course trivial blocks consisting of one replica
or of all replicas�

A transitive permutation group G is said to be primitive if it has no non�trivial
blocks� Thus for every non�trivial subset B  A there will be a permutation 
 
 G
and a pair of replicas a� b 
 B such that 
�a� 
 B and 
�b� �
 B� In other words the
image 
�B� has a non�empty intersection with both B and its complement in A� In a
primitive group the stabilizer subgroups Ga are maximal i�e� contained in no larger
proper subgroup and conversely if this is the case the group is primitive�

An example of a primitive invariance group of degree � is given by ���� This group
is however not symmetrizing� The only primitive groups of degree � are the symmetric
group S	 and the alternating group A	 both being doubly transitive and therefore
leading to replica symmetry� Examples of imprimitive invariance groups of degree � are
given by ���� and ����� The �rst example of a non�trivial symmetrizing primitive group
is of degree � �and order ��� generated by the permutations f�������� ��������g� The
invariant overlap matrix is of the form

�
BBBBBB�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCCCA

����

Notice that it is not possible to point to any block structure in this example�
A doubly transitive group is primitive� For let us choose an arbitrary non�trivial

subset B  A and let a� b 
 B with a �� b� Then since G is doubly transitive so that
all non�diagonal pairs can be mapped to each other there will be a permutation 
 such
that 
�a� � a and 
�b� � c where c �
 B� Hence G is primitive� Conversely it follows
that imprimitive groups cannot be doubly transitive� Imprimitive invariance groups are

��



interesting because they cannot lead to replica symmetry but necessarily must lead to
non�trivial replica symmetry breaking�

The opposite is however not true� A primitive group is not necessarily doubly
transitive as evidenced by ���� which is also symmetrizing� In order for a primitive
group to be doubly transitive something else besides symmetry is needed for example
a subgroup which leaves some replicas invariant and is transitive in the remaining ones�

���� Basis for imprimitivity

Let us consider an imprimitive group G and let B be a non�trivial block� Let us run
through all permutations and form the set of resulting di�erent images fA�� A�� � � � � Arg
of B i�e� As � 
s�B� for suitable permutations 
s� One of the As�s must be equal to B
because the identical permutation maps B onto itself� The transitivity guarantees that
every replica must belong to at least one of these subsets such that the set of images
covers the set of all replicas� It now follows that the subsets are non�overlapping� For if
the same replica was found in As and At then we would have 
s�a� � 
t�b� for suitable
elements a and b of B� Hence b � 
��t 
s�a� would be a permutation mapping an
element of B into an element of B� Due to B being a block this permutation would
map all of B onto itself B � 
��t 
s�B� and from this would follow the contradiction
At � 
t�B� � 
s�B� � As� Since every subset must have the same number of elements
m � jAsj it follows that m is a factor of n in fact n � mr with r � �� Hence every

transitive group of prime degree is primitive �this is how the primitivity of the example
���� was inferred��

Any set of non�overlapping subsets fA�� A�� � � � � Arg with the property that every
permutation 
 
 G maps the subsets bodily onto each other i�e� 
�As� � At is called
a basis for imprimitivity� Here it should be noted that there may be more than one
way of choosing a basis for imprimitivity in an imprimitive group �see for example ����
which has � di�erent bases of imprimitivity��

Let now fA�� A�� � � � � Arg be a particular basis for imprimitivity of G� Each per�
mutation 
 of G acts as a permutation � on the r subsets 
�As� � A
�s�� This map

 �� � � ��
� is a homomorphism of G to a permutation group R of degree r which we
shall call the global group� This group is itself transitive and symmetrizing because of the
transitivity and symmetry of G� The kernelK of the homomorphism consists of all those
permutations that leave all the subsets invariant i�e� 
�As� � As for s � �� �� 	 	 	 � r�
It is self�conjugate i�e� 
K
�� � K for all 
 
 G and every coset of the kernel 
K
and only this set of permutations maps to the same global permutation � under the
homomorphism�

Let Hs be the subgroup consisting of all those permutations in G which leave a
particular subset As invariant i�e� 
�As� � As for 
 
 Hs� It easily follows that all
these subgroups are conjugate to each other in fact 
Hs


�� � H
�s� and therefore all
isomorphic to each other� If Hs is projected on As it will act like a permutation group
of degree m� All the subgroups Hs are therefore homomorphic to the same permutation
group L of degree m which we shall call the local group� It is evident that the kernel
K which is the intersection of all the Hs must map to a self�conjugate subgroup of the

��



direct product of L with itself r times or K � L�r�
An imprimitive group is thus characterized by two smaller groups� the local group

which speci�es which permutations are permitted within a single subset of replicas and
the global group which speci�es how the subsets of replicas can be permuted among
each other� How these two groups collaborate to build up the invariance group is in
general quite complicated�

���� The structure of the overlap matrix

The structure of the invariant matrix corresponding to an imprimitive invariance group
is best displayed in block form by means of the r	r square submatrices qst of sizem	m
that the imprimitivity basis de�nes�

�
BBBB�

A� A� � � � Ar

A� q�� q�� � � � q�r

A� q�� q�� � � � q�r
���

���
���

� � �
���

Ar qr� qr� � � � qrr

�
CCCCA

Here we have ordered the replicas globally so that the various subsets of the imprimitivity
basis follow each other� Locally we order the replicas in each subset by choosing a �xed
set of permutations 
s mapping As onto As�� for each s and de�ning the �rst element
of As to map on the �rst of As�� the second on the second and so on�

With this ordering it immediately follows that the diagonal block matrices qss are
all identical and invariant under the local group L� For the o��diagonal blocks the
situation is somewhat more delicate� If the global group R is doubly transitive then
all o��diagonal block matrices must be copies of each other apart possibly from local
permutations of the rows �or columns�� Otherwise if R is not doubly transitive each
pair orbit will correspond to a di�erently parametrized matrix�

Imprimitivity gives rise to a partial ordering of the elements of the natural basis of
G because some of the basis elements lie entirely within the diagonal blocks and the
rest outside� Those belonging to the diagonal blocks must generate a closed algebra
among themselves and in this sense be �smaller� than those belonging to the o��diagonal
blocks� If the local group is also imprimitive its local group in turn de�nes a set of still
�smaller� basis elements and so on� Thus every imprimitive group has an ordering of
its natural basis in which subsets of basis elements are nested within each other such
that each subset forms a closed algebra by itself�

It will not come as a surprise that the Parisi scheme consists of imprimitive invariance
groups nested in this way within each other� The Parisi scheme is however as mentioned
above the only one which leads to a full ordering of the whole basis�

���
 Semidirect products

It is convenient to formalize these considerations by renaming the replicas �a� s� where
a � �� �� 	 	 	 �m is the local index and s � �� �� 	 	 	 � r is the global index� Each permu�

��



tation in G can be written as 
 � ��� �� where � is a global permutation of the basis
fA�� 	 	 	 � Arg accompanied by individual local permutations � � f��� 	 	 	 � �rg inside each
subset such that 
�a� s� � ��
�s��a�� ��s��� De�ning �����s � �s�

�
s the composition law

for the permutations in G takes the form

��� �� � ���� ��� � �������� ���� ����

where ����s � �
���s� denotes the globally permuted local permutations� The inverse
group element is similarly given by

��� ���� � ���������� ����

The kernel K is made up from the special permutations �conserving the global or�
der� of the form ��� ��� If two permutations ��� �� and ��� �� map to the same global
permutation then it follows easily that ���� belongs to the kernel� Hence the range of
possible values for the local permutations accompanying � is the coset �K where � is
any set of local permutations accompanying ��

In general there will not be permutations �conserving the local order� of the form
��� �� for all �� As we have seen it is always possible to renumber the replicas so that
there will be at least r elements of this type �for a speci�c subset of ��s�� If ��� �� belongs
to G for all � then R is isomorphic to a subgroup of G and G itself will consist of all pairs
��� �� with � 
 K and � 
 R� The composition law ���� then shows 	Gorenstein ������

that G is the semi�direct product of K and R which shall be written G � K�R� In this
case the local group L will also be obtained by projecting the kernel K onto any of the
basis sets As� For the overlap matrix this means that all o��diagonal blocks belonging
to the same global pair orbit must be identical to each other �without additional local
permutations��

���� Building sequences

Imprimitivity guarantees that a symmetrizing invariance group G will give rise to non�
trivial replica symmetry breaking� The two derived groups the local group L of degreem
and the global group R of degree r �belonging to a particular basis for imprimitivity� are
both symmetrizing invariance groups and n � mr� Each of these groups may further be
decomposed and the procedure �rst stops when both the derived groups are primitive�

Conversely we may also construct a sequence of permutation groups G� for � �
�� �� 	 	 	 of degree m� such that the local group of G��� is G�� The index � indicates the
level of replica symmetry breaking� At each level we may choose a replication factor r�
a kernel subgroup K� � G�r�

� which projects to G� and a global group R� and form the
semidirect product G��� � K� �R� of degree m��� � m�r��

It is possible to create many sequences of this kind by varying the replication factors
r� the way the kernel K� is chosen and the global group R�� There are at least two
extreme cases that immediately present themselves �an intermediate scheme is found in
	de Dominicis et al ������
��

��



In the �rst case which is in a sense maximally symmetric one chooses the kernel to
be equal to the direct product and the global group to be the full symmetric group i�e�
G��� � G�r�

� � Sr� with G� � S�� This is also called the wreath product of G� and Sr�
�see for example 	Kerber ������
�� Because of the direct product all matrix elements of
q outside the block diagonal must be identical and at each level the natural basis is only
extended with a single element� This is therefore the Parisi scheme which has already
been fully discussed�

In the second case which is in a sense minimally symmetric the kernel is chosen to
consist of similar transformations on each basis set As such that �� � �� � � � � � �r
or in other words K � rL in the notation of section �� The kernel simply permutes
the replicas in each basis set in the same way instead of independently as in the direct
product� If the global group is chosen to be symmetric we get the sequence G��� �
r�G� � Sr� with G� � S� �in this case the semidirect product becomes a direct product
because a global permutation does not change the action of the local ones ���� � ���
Hence all o��diagonal submatrices of the overlap matrix must be identical and invariant
under G� and they will have the same structure as the diagonal matrices but with a
di�erent set of parameters� An example of such a matrix is given by ���� and corresponds
to the invariance group �S� � S�� In Appendix A it is shown that this scheme is not
acceptable for n� ��

�� Conclusions

We have shown that the theory of permutation groups is important for the analysis
of replica symmetry breaking and its consistent extension to the limit of no replicas�
In order to derive the Parisi ansatz two rather natural conditions must be imposed on
the form of the residual invariance group of the replica symmetry breaking mean �eld
solutions�

The �rst condition is that the invariance group should be symmetrizing which means
that it should enforce transposition symmetry of the replica overlap matrix� This matrix
is symmetric by de�nition but the ring of invariant matrices could in the general case
also contain asymmetric matrices� The requirement that the invariance group be sym�
metrizing makes this ring commutative and forces the invariance group to be transitive�
The condition seems natural because the transposition symmetry of the overlap matrix
is in fact one of the invariances of this matrix�

The second condition is that the invariance group should be simply extensible which
means that it should be possible to order the algebraic basis for the transitive pair orbits
such that each truncated set of basis elements closes upon itself� In other words it should
be possible to �peel o�� one basis element at a time without disturbing the algebraic
relationship between the remaining ones� The ordering is actually a consequence of
the imprimitivity of the invariance group� Since the ordering also implies a complete
ordering of all the parameters of the overlap matrix it is possible in a meaningful way
to introduce a function of a real variable a function which in the limit of no replicas
becomes the well�known spin glass order parameter� The condition of extensibility is
natural from the point of view of generating a model for replica symmetry breaking

��



which allows continuation beyond integral numbers of replicas�
The two conditions that the invariance group is symmetrizing and simply extensi�

ble have been shown uniquely to characterize the Parisi scheme for replica symmetry
breaking� The invariance group of any alternative scheme can therefore either not be
symmetrizing or not simply extensible� Intransitive permutation groups cannot be sym�
metrizing and since it is relatively easy to see that there are �uctuations into intransitive
directions near the replica symmetric solutions this possibility merits further investiga�
tion� If the group is not simply extensible it cannot give rise to a complete ordering
of the parameters and the meaningfulness of introducing a function of a real variable
will be compromised� In one general extensible but not simply extensible case we have
shown that the limit of no replicas for the free energy does not exist� Finally it should
be mentioned that non�symmetrizing groups can in general not be simply extensible
because the generators of the algebra will come in pairs related by transposition sym�
metry and this again compromises the use of a function of a real variable as a physical
order parameter�

A An alternative scheme

In section �� an alternative in�nite sequence of invariance groups was constructed by
setting G��� � r�G� � Sr� with G� � S�� The overlap matrix at level � � � has of the
following structure

q����� �

�
BBBBB�

q
���
� q

���
� � � � q

���
�

q
���
� q

���
� � � � q

���
�

���
���

���

q
���
� q

���
� � � � q

���
�

�
CCCCCA ����

where q
���
� and q

���
� are independently parametrized matrices invariant under G�� Since

the number of parameters satis�es � � I����� � ��� � I���� we have � � I��� � ���� �in
the Parisi scheme we have instead � � I��� � ���

Let the natural basis elements at level � be denoted T ���
i with index i � �� �� 	 	 	 � I����

Due to the binary nature of ���� it is convenient to use a binary notation for the index
writing i � ���� 	 	 	 ���� where the ��s are bits with the most signi�cant bit furthest
to the left� Let us denote by Dr the r 	 r matrix with ��s along the diagonal and ��s
outside �the unit matrix� and by Er the r 	 r matrix with ��s along the diagonal and
��s outside� Then the recursion relation for the basis elements can be written as a direct
product

T
�����
�i � T

���
i � ��� � ��Dr� � �Er��

From this the recursion relation for the structure constants can be derived

c
������k
�i�j �



���j�� j � �r� � ����

�
c
���k
ij

��



or after expansion

c�����������������������
�������
�

�Y
m��



��m�j�m�mj � �rm � ���m�m

�

We shall in this appendix limit the study to the simpler case of r� � � for all �� In
that case the structure constants simplify so that we for all � have �� � j�����j � �����
where � denotes the �exclusive or� so that the natural algebra can be written in the
form

TiTj � Ti	j ����

where the index on the right hand side is determined by the bitwise application of
�exclusive or�� Notice that there is no use for the level indicator in this form because �
bits can be added to the front of the indices without changing the algebra�

It is clear that this system is extensible level by level� Inside each level there is
however no way of ordering all the elements of the algebra� The disorder may be
observed at level � where the two new elements numbered � and � satisfy � � � � ��
Since � � � � � and � � � � � there is no ordering of the two new elements which could
lead to a closed algebra consisting of say � � and � alone� Below the structure of the
invariant matrix is shown at level ��

BBBBBBBBBBBBB�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
CCCCCCCCCCCCCA

Finally it follows from ���� that T �
i � � so that the eigenvalues are all ��� Since

there are as many parameters as the dimension i�e� � � I � n the eigenvectors must
all be non�degenerate and hence the fractional dimension is d � �

n
for all eigenvectors�

This seems to prevent the calculation of expressions of the form ���� and consequently
the use of this particular scheme in the limit of n� ��
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