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Abstract

The aim of this paper is to present to a non-physicist audience the basic principles under-
lying the partial differential equations encountered in physics. The audience is expected to
be familiar with the mathematics of partial differential equations but to have only a limited
knowledge of the physics behind. It is shown how physics provides an intuitive understanding
of the mathematical equations and the limitations on their use. The emphasis is on the inter-
play between global and local conservation laws. The paper provides a top-down view, using
a compact notation common in physics, but does neither enter into practical applications nor
numeric simulations. It can in no way replace a proper course in continuum physics.

The everyday experience of the smoothness of matter is an illusion1. Since the beginning of
the twentieth century it has been known with certainty that the material world is composed of
microscopic atoms and molecules, responsible for the macroscopic properties of ordinary matter.
Long before the actual discovery of molecules, chemists had inferred that something like molecules
had to exist, even if they did not know how big they were. Molecules are small — so small that
their existence may be safely disregarded in all our daily doings. Continuum physics deals with
the systematic description of matter at length scales that are large compared to the molecular
scale. Most macroscopic length scales occurring in practice are actually huge in molecular units,
typically in the hundreds of millions. This enormous ratio of scales isolates continuum theories
of macroscopic phenomena from the details of the microscopic molecular world. There might, in
principle, many different microscopic models leading to the same macroscopic physics.

Whether a given number of molecules is large enough to warrant the use of a smooth continuum
description depends on the precision desired. Since matter is never continuous at sufficiently high
precision, continuum physics is always an approximation. But as long as the fluctuations in physical
quantities caused by the discreteness of matter are smaller than the desired precision, matter may
be taken to be continuous. Continuum physics is, like thermodynamics, a limit of statistical physics
where all macroscopic quantities such as mass density and pressure are understood as averages over
essentially infinite numbers of microscopic molecular variables. At a level intermediate between
the molecular and continuum descriptions of matter, one often speaks about material particles as
the smallest objects that may consistently be considered part of the continuum description within
the required precision. Thus, for example, to suppress the random density fluctuations in air below
1%, the smallest material particle must contain at least 10,000 molecules, corresponding to the
number contained in a cubic box roughly 100 nanometers on a side. Even if a material particle
always contains a large number of molecules, it may nevertheless in the continuum description be
thought of as infinitesimal or point-like.

∗Introductory lecture presented at the Workshop on PDE methods in Computer Graphics, Department of Com-
puter Science, University of Copenhagen, Denmark, March 31–April 1, 2005.

1This introduction is in part composed of excerpts from the first chapter of my recent book [1].
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In continuum physics a macroscopic body is seen as a huge collection of tiny material particles,
each of which contains a sufficiently large number of molecules to justify the continuum description.
Continuum physics does not on its own go below the level of the material particles. Although the
mass density in a point may be calculated by adding together the masses of all the molecules in a
material particle containing that point and dividing with the volume occupied by it, this procedure
falls strictly speaking outside continuum physics. In the extreme mathematical limit, the material
particles are taken to be truly infinitesimal, and all physical properties of the particles as well as
the forces acting on them are described by smooth, or piecewise smooth, functions of space and
time.

Continuum physics is therefore a theory of fields. Mathematically, a field f is simply a real-
valued function f(x, y, z, t) of spatial coordinates x, y, z, and time t, representing the value of
a physical quantity in this point of space at the given time, for example the mass density ρ =
ρ(x, y, z, t). Sometimes a collection of such functions is also called a field and the individual real-
valued members are called its components. Thus, the most fundamental field of fluid mechanics,
the velocity field v = (vx, vy, vz), has three components, one for each of the coordinate directions.
Besides fields characterizing the state of the material, such as mass density and velocity, it is
convenient to employ fields that characterize the forces acting on and within the material. The
gravitational acceleration field g is a force field, which penetrates bodies from afar and acts on
their mass. Some force fields are only meaningful for regions of space where matter is actually
present, as for example the pressure field p, which acts across the imagined contact surfaces that
separate neighboring volumes of a fluid at rest. Pressure is, however, not the only contact force.
For fluids in motion, for solids and more general materials, contact forces are described by the
stress field, {σij}, which is a 3× 3 matrix field with rows and columns labeled by the coordinates:
i, j = x, y, z.

Mass density, velocity, gravity, pressure, and stress are the usual fields of continuum mechanics.
The more general subject of continuum physics also deals with thermodynamic fields, like the
temperature T , the specific internal energy density u, and the specific entropy s. There may also
be fields that describe different states of matter, for example the electric charge density ρe and
current density je. The associated electric and magnetic field strengths, E and B, are like the
Newtonian field of gravity g thought to exist even in regions of space completely devoid of matter.
Further fields may refer to material properties, for example the coefficient of shear elasticity µ of
a solid and the coefficient of shear viscosity η of a fluid. Such fields are usually constant within
homogeneous bodies, i. e. independent of space and time, and are mostly called material constants
rather than true fields.

Like all physical variables, fields evolve with time according to dynamical laws, called field
equations, taking the general form of coupled partial differential equations. In non-relativistic
continuum mechanics, the central equation of motion descends directly from Newton’s second law,
whereas mass conservation, which is all but trivial and most often tacitly incorporated in particle
mechanics, turns into an equation of motion for the mass density. Still other field equations such
as Maxwell’s equations for the electromagnetic fields have completely different and non-mechanical
origins, although they do couple to the mechanical equations of motion.

The paper is organized in the following way. In section 1 which to some extent serves to define
notation, the Poisson equation for gravity is derived directly from Newton’s law of gravity. In
section 2 the concept of stress is introduced and Cauchy’s equilibrium equation for non-relativistic
statics is derived and applied to hydrostatics and linear elastostatics. In section 3, conservation of
mass is used to derive Euler’s equation of continuity, and from momentum conservation Cauchy’s
equation of dynamics is derived. For Newtonian fluids these equations become the Navier-Stokes
equations. In section 4 energy conservation is used to derive the thermodynamical heat equation,
and in section 5 the relation between laws of balance and conservation is discussed, together. Finally
in section 6 some concluding remarks are made about the extension of continuum mechanics beyond
the traditional topics.
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1 Newtonian gravity

Isaac Newton created the first dynamics of point particles and gave us the mathematics to deal
with it. His Second Law states that the equation of motion for a point particle of mass m is a
second order ordinary differential equation in time2,

mẍ = F(x, ẋ, t) , (1)

where the vector function F on the right hand side is the total force acting on the particle. If a
system consists of more than one point particle, there is an equation of motion for each particle,
and the force on any of the particles will in general depend on the positions and velocities of all
the particles.

Newton also gave us the first theory of gravity, in which the gravitational force exerted by a
point particle of mass M on a point particle of mass m a distance r away is of magnitude GmM/r2,
where G is the gravitational constant. Holding the particle M fixed at the origin of the coordinate
system, and using that the force is attractive and directed along the line connecting the particles,
we find

F = −GmM

r2
er , (2)

where r = |x| is the length of x and er = x/r is the unit radius vector. Together with Newton’s
equation of motion for a point particle (1) this law is sufficient to calculate the leading approxi-
mation to the planetary orbits around a fixed Sun. Including the mutual gravitational interaction
of the orbiting objects, Newton’s theory of gravity for point particles may be extended to cover
the motions of all objects in the solar system and beyond: spacecraft, meteors, comets, planets,
moons, stars, and galaxies.

Treating all these bodies as point particles is an approximation justified only by the enormous
distances in space in comparison with the sizes of the objects. Closer to home, the fall of an apple
is also governed by gravity, but in this case it would seem like madness to treat the Earth as a point
particle3. For an extended static mass distribution field ρ(x), the force on a small test particle of
mass m may be calculated by adding the contributions from each and every material particle in
the body4. The mass of a material particle situated at x is dM = ρ(x) dV where dV = dxdydz is
the “infinitesimal‘” volume of the particle, and replacing x by x− x′, we find,

F = mg , g(x) = −G

∫
x− x′

|x− x′|3 ρ(x′)dV ′ . (3)

Here we have also for convenience factored the force into the product of the test particle mass
m and the static gravitational acceleration field g(x). This is the force you, for example, would
use to calculate the small corrections to the orbit of a near-earth satellite, taking into account the
Earth’s deviation from perfect spherical symmetry, and the uneven distribution of land, sea, and
mountains, as well as its complex material composition.

It is now a simple mathematical exercise to show that the vector gravitational field g may be
written as the gradient5 of a single (scalar) field, the gravitational potential Φ,

g = −∇Φ , Φ(x) = −G

∫
ρ(x′)
|x− x′| dV ′ . (4)

2Cartesian coordinates (and vectors) in ordinary space are denoted by boldface symbols x = (x, y, z). In vener-
ation of Newton we use here a dot to indicate differentiation with respect to time.

3It was Newton’s great luck that for a spherically symmetric body the field outside the body will in fact be
that of a point particle, permitting him with remarkable precision to connect the Moon’s orbital motion with the
anecdotal fall of an apple.

4That the gravitational forces obey this superposition principle should be viewed as an empirical law of nature.
5The vector gradient operator, called nabla or del, is defined as ∇ = (∂/∂x, ∂/∂y, ∂/∂z).
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In principle, this allows us to calculate the gravitational field from any prescribed mass distribution.
It is, however, easy to set up a general physical situation where the mass density is not pre-

scribed, but depends on the actual field of gravity, which in turn depends on the mass density, and
so forth. To handle such circularity, it is much better to convert the above relation (4) between
the mass density and the potential into a partial differential equation. There are numerous ways
of doing so, but to make a long story short we shall use the well-known expression for the Laplace
operator ∇2 = ∇ ·∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 applied to the archetypal Coulomb potential
1/ |x|,

∇2 1
|x| = −4πδ(x) , (5)

where δ(x) = δ(x)δ(y)δ(z) is the three-dimensional Dirac delta-function. Replacing x by x − x′,
and applying the Laplace operator to (4), we finally obtain Poisson’s equation (1812),

∇2Φ = 4πGρ . (6)

Even if this is not the first partial differential equation in the history of physics, it is certainly one
of the most fundamental ones. Mathematically it is the prototype of elliptic differential equations,
arising in hydrostatics, electrostatics, magnetostatics, and many other areas of physics.

Notice that the relation (4) between the potential and the mass density is non-local, meaning
that the potential in a given point depends on the mass density in all points of space6. For a
time-independent static mass density this does not matter, because in infinite time any signal has
time to arrive from even the farthest corners of space. But should the mass density vary with time,
as it for example does in the solar system because of the motions of the planets, the Newtonian
field of gravity must according to (4) respond instantaneously everywhere to reflect this variation7.

2 Non-relativistic statics

The world is not static, but dynamic. Living on the surface of earth, we are nevertheless — and
luckily so — surrounded by objects that do not move, or at least do not move much. The study
of the static configurations of matter under the influence of external and internal forces is in a
sense the baseline for the physics of continuous matter. Mathematically, the physics of static
matter leads to elliptic partial differential equations, that are much more amenable to analytic or
numeric treatment than the parabolic and hyperbolic partial differential equations of dynamics to
be presented in the following section.

2.1 Cauchy’s equation of static equilibrium

The principle behind continuum statics is the vanishing of the total force acting on any volume
of matter. In Newtonian particle mechanics the concept of a body usually covers an arbitrary
collection of fixed mass point particles, whereas in continuum physics any volume of matter may
serve as a body.

6The inverse relation (6) is on the other hand local, meaning that the mass density in a point only depends on
the potential in the immediate vicinity of this point. Since we think of the potential (and thus the gravitational
force) as caused by the mass density, and not the other way around, this is of little interest. We shall later return
to the question of locality in dynamics.

7Although viewed with unease by Newton himself, this action-at-a-distance did not conflict with any known
principles of physics at that time. After Einstein created the special theory of relativity in 1905, instantaneous
action-at-a-distance became an acute problem because relativity predicts that no signal can travel faster than light.
The resolution of the problem was also given by Einstein in 1916 in his general theory of relativity in which he set up
the dynamics of gravity (in the framework of curved spacetime). Though not yet directly confirmed by experiment,
gravity is today firmly believed to spread through space at the speed of light.
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Two kind of forces act on the material of a body. First, there are long range forces penetrating
the whole volume V of the body. These forces are described by a force density f = dF/dV ,
the prime example8 being gravity with f = ρg. Besides these, there are short-range contact
forces acting on the surface S of the volume V . Even if they act only on surfaces, contact forces
are nevertheless described by fields thought to exist throughout the body. In the simplest case,
hydrostatics of isotropic fluids, there is only the pressure field p(x) which acts along the normal
to any real or imagined surface with a force proportional to the area. Most materials are not as
simple as isotropic fluids. Even isotropic elastic solids have a more complicated structure, and the
plethora of modern materials with intermediate properties between the fluid and solid state adds
further dimensions to the description.

The fundamental concept for describing contact forces is a generalization of the pressure field,
called the stress field. It is a tensor9 (i.e. matrix) field, σij(x) with indices running over the
coordinate labels, here i, j = x, y, z. The stress field is defined such that the component σij equals
the local force per unit of area acting in the coordinate direction i on a surface with normal along
the coordinate direction j. To calculate the local contact force on any surface element dS = {dSi}
one invokes Cauchy’s stress hypothesis10, and simply adds the contributions from each coordinate
direction dFi =

∑
j σijdSj . The total force on a body of volume V with surface S then becomes

the sum of the volume and surface contributions,

Fi =
∫

V

fi dV +
∮

S

∑

j

σij dSj . (7)

Converting the closed surface integral into a volume integral by means of Gauss’ theorem, we may
express it as,

Fi =
∫

V


fi +

∑

j

∇jσij


 dV . (8)

In compact notation the integrand one may also be written F =
∫

V
(f + ∇ · σσσᵀ) dV , where σσσᵀ is

the transposed stress tensor.
In static equilibrium the total force must vanish for any volume, and it follows that the integrand

must vanish everywhere, or

fi +
∑

j

∇jσij = 0 . (9)

This is Cauchy’s equilibrium equation from 1827. Although derived here from the global con-
sideration, it follows from (8) that Cauchy’s equilibrium equation may be viewed equivalently as
expressing the vanishing of the effective force dF = (f + ∇ · σσσᵀ) dV , acting on each and every
material particle in the body. It is thus in accordance with Newton’s Second Law (1) applied to a
particle at rest.

Cauchy’s equilibrium equation (9) consists of three differential conditions. In conventional

8The only other example of a long range force is in fact the electromagnetic Lorentz force f = ρcE + jc ×B.
9The simple boldface vector notation used up to this point is not sufficient to handle more complicated expressions

involving tensors. Instead we shall use a component notation with indices i, j, k, . . . running implicitly over the
coordinate labels. This notation coexists peacefully with the ordinary vector notation. We shall, however, refrain
from using the Einstein convention of implicit summation over all repeated indices, but write each sum explicitly.

10Cauchy’s stress hypothesis is really a theorem which can be derived from physical arguments.
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mathematical notation they are,

fx +
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0

fy +
∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0

fz +
∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
= 0

To transform these conditions into a closed set of partial differential equations, it is necessary to
add suitable constitutive equations, expressing the local relations between the stresses and the local
state of matter, described by suitable fields. Different kinds of continuous matter — gases, liquids,
solids, or intermediate — only differ by their constitutive equations. We shall see below how this
is done for isotropic Newtonian fluids and isotropic linear elastic solids.

The stress tensor has a priori nine different components. In classical continuum theory the
stress tensor is assumed to be symmetric,

σij = σji , (10)

and thus has only six independent components. This relation, called Cauchy’s second law (1827),
is however not a law of nature [2, 1] but should rather be viewed as belonging to the constitu-
tive equations. There exist in fact non-classical extensions of continuum theory with manifestly
asymmetric stress tensors (see for example [3]).

So far we have not discussed boundary conditions. If the material properties vary smoothly
across a body, the stress tensor may also be assumed to vary continuously. At an interface between
different materials11 where material properties jump discontinuously, boundary conditions are,
however, necessary to bridge the discontinuity. For the stress tensor, these are provided by Newton’s
Third Law which states that action and reaction must be equal and opposite. Since the normals
are opposite on the two sides of the interface, this law implies the continuity of the stress vector12,
defined as the vector force (σσσ · n)i =

∑
j σijnj per unit of area acting on a surface with normal

n. The continuity condition may then be written as, ∆σσσ · n = 0 where ∆σσσ is the difference of
the stress tensors on the two sides of the interface. Newton’s Third Law only demands continuity
of three linear combinations of the stress tensor components, whereas the remaining three linear
combinations of the symmetric stress tensor are in general allowed to jump across an interface.

2.2 Hydrostatics

An isotropic fluid that is everywhere at rest can, as mentioned, only support pressure forces acting
along the normal to any real or imagined surface. The pressure is defined as the force per unit
of area and acts on any vector surface element dS with a force dF = −p dS (with a conventional
minus-sign). Evidently this corresponds to the stress tensor,

σij = −p δij , (11)

where δij is the Kronecker symbol. Upon insertion into Cauchy’s equilibrium equation (9) we
obtain for the case of gravity the basic differential equation of hydrostatics13,

ρg −∇p = 0 . (12)

11Materials typically interface across a few molecular diameters. Interfaces therefore fall outside the continuum de-
scription and are replaced by mathematical discontinuities. Interfaces may nevertheless possess physical properties,
for example surface tension.

12The stress vector is not a vector field in the usual sense of the word, depending only on the location x, because
it also depends on the local normal n to the surface.

13This equation may be viewed as expressing Archimedes Law, “buoyancy balances weight”, for material particles.
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Due to the non-local character of the gravitational field (3), this is in general an integro-differential
equation. If the field of gravity is prescribed, as it for example is to a good approximation on
the surface of earth, one obtains in combination with an equation of state (see below) a partial
differential equation which can be applied to determine the density and pressure of the sea and
the atmosphere.

In the general case where the gravitational field is not prescribed, we introduce the potential
(4) and write (12) in the form ∇p = −ρ∇Φ. Dividing by the mass density and calculating the
divergence of both sides, we obtain by means of the Poisson equation (6), the following fundamental
equation of hydrostatics14,

∇ ·
(

1
ρ
∇p

)
= −4πGρ . (13)

This is the equation you could use to calculate the interior properties of ordinary stars and planets.
Notice that it is in general non-linear (except for p ∼ ρ2).

There are still two unknown fields in the above equation. To arrive at an equation for a single
field, we need a relation between pressure and density. It is a well-known result of thermodynamics
that for simple materials in thermodynamic equilibrium there will always exist an equation of state
relating the values of pressure p, density ρ, and temperature T . For example, for an ideal gas the
equation of state takes the simple form p ∼ ρT whereas in liquids it is more complicated. Assuming
that every material particle is in local thermodynamic equilibrium, the equation of state becomes
a relation between the local values of the fields,

p(x) = f(ρ(x), T (x)) . (14)

If the temperature field is specified, for example constant temperature, this relation may be used
to eliminate the pressure, and eq. (13) becomes indeed a nonlinear elliptic partial differential
equation for the density field. If on the other hand the temperature field is not specified, an extra
partial differential equation for that field must be added (see section 4)15.

2.3 Linear elastostatics

Any deformation of a material body may be described by an exhaustive account of how each
material particle in the body is displaced from its initial position. The displacement of a material
particle is naturally defined as the vector u = x − x0, where x is the current and x0 the initial
position of the particle. In keeping with our general definition of a field as indicating the actual
state of matter in a given point, we view the displacement as a function of the current position,
u = u(x). This is the Eulerian representation of the displacement field. Alternatively, and
equivalently, one may use the Lagrangian (or material) displacement field, u = u(x0), defined as
a function of the initial position of a material particle in the undeformed body. The distinction
between the Eulerian and Lagrangian formalisms is of no consequence to leading order when the
displacement field has small gradients satisfying |∇iuj | ¿ 1 for all i, j. In the remainder of this
subsection we shall assume this to be the case.

Displacement includes bodily translations and rotations that should not be classified as defor-
mations. A true deformation must involve changes in the local geometric relationships in the body.

14One may wonder how the vector equation (12) can be replaced by the scalar equation (13). But since ∇p =
−ρ∇Φ tells us that the gradient of the pressure must everywhere be parallel with the gradient of the gravitational
potential, it follows that the isobaric surfaces (of constant pressure) must coincide with the equipotential surfaces
of gravity everywhere in a fluid at rest. Hydrostatics is thus completely described by a single family of surfaces, i.e.
by a single scalar field.

15The coupling between temperature and density caused by the nearly universal heat expansion of matter may,
however, in a gravitational field give rise to convective instabilities, invalidating the assumption of a static state.
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To expose this we consider an infinitesimal material “needle” initially connecting the nearby points
x0 and x0 + a0 in the body. After the displacement it connects the points x = x0 + u(x) and
x+a = x0 +a0 +u(x+a). Expanding to first order in a, we find the change in the needle vector
δa = a− a0 = u(x + a)− u(x) ≈ (a ·∇)u(x). In view of the assumption of small displacement
gradients, |∇iuj | ¿ 1, this is just a tiny correction to the needle vector. Since the scalar product
a · b of two needle vectors is a purely geometric quantity, unaffected by translations and rotations,
we may isolate proper deformations by calculating the change in the scalar product,

δ(a · b) = δa · b + a · δb = a · (∇u) · b + b · (∇u) · a .

Evidently, the scalar product is controlled by the symmetrized displacement gradient tensor, ∇iuj+
∇jui. Cauchy’s strain tensor is conventionally defined to be half of that,

uij =
1
2
(∇iuj +∇jui

)
. (15)

such that we have δ(a · b) = 2
∑

ij uijaibj . A displacement is classified as a deformation when the
strain tensor does not vanish everywhere. Geometrically, the diagonal component uii represents the
relative length increase along the i-th axis, whereas the non-diagonal component uij is proportional
to the change in angle between the initially orthogonal i-th and j-th coordinate axes.

Bodily displacements, translations and rotations, should not create stresses, implying that in
an elastic material the local stresses can only depend on the local strains. When the strains are
small, the relation between the stress tensor and the strain tensor for an elastic material will be
approximatively linear (Hooke’s law). In full generality it takes up to 18 different parameters,
called elastic moduli, to characterize the most complex linear elastic material (a triclinic crystal),
whereas for an isotropic material only two parameters are needed. Assuming that all the stresses
in the body vanish before the deformation16, the isotropic relation can for symmetry reasons only
take the tensor form

σij = 2µuij + λ δij

∑

k

ukk . (16)

The elastic moduli, λ and µ (also called the Lamé coefficients), may in principle vary across a
material, but we shall for simplicity assume that they are constant. They are usually huge in
macroscopic units, for example about 100 gigapascals for iron. Everyday stresses are usually
smaller than one bar (100 kilopascals), and thus typically generate strains of the order of parts per
million.

We are now in position to write down the equilibrium equation for the displacement field.
Inserting the constitutive equation (16) into the equilibrium equation (9) and afterwards inserting
the Cauchy strain tensor (15), we arrive after a bit of index manipulation at the following relatively
simple vector partial differential equation for the displacement field, called the Navier-Cauchy
equilibrium equation,

f + µ∇2u + (λ + µ)∇∇ · u = 0 . (17)

If the force field is prescribed, which it normally is for small deformations, this elliptic equation may
be solved for for the displacement field (with suitable boundary conditions on the displacement
and/or stress fields).

If we relax the assumption of small displacement gradients, the Cauchy strain tensor (15)
acquires a term quadratic in the displacement gradients, and elastostatics becomes nonlinear even
if Hooke’s linear law (16) is maintained. In the 20’th century, large efforts have been devoted to
the study of nonlinear elasticity because of the technological interest in large deformations, but
although the mathematics becomes forbidding [5, 6, 7], no new physical principles are involved.

16There are many situations where this condition is not fulfilled, for example prestressed armored concrete or
glass with frozen-in stresses.
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3 Non-relativistic dynamics

Newton’s Second Law (1) is the fundamental classical equation of motion for particles. Viewing
continuous matter as a collection of material particles, this law must a fortiori apply to each and
every material particle, and it is perfectly possible to carry through such an argument and derive
the fundamental equations of continuum mechanics. It is, however, more instructive to begin
with a global argument of the same kind as we did for statics in the preceding section, and only
afterwards derive the local laws.

3.1 Mass conservation

In non-relativistic physics, mass cannot be created or destroyed. This fundamental law does not
appear explicitly among Newton’s laws, but is implicitly contained in the assumptions that the
mass of a particle is a constant, and that a body consists of a fixed number of constant mass
particles. In continuum physics a body is simply any volume of matter, and material may in the
course of time flow in and out through the surface of this volume, thereby changing its mass.
Denoting the velocity field by v(x, t), this immediately leads to the following expression17 for the
global law of mass conservation in a fixed volume V with surface S,

d

dt

∫

V

ρ dV +
∮

S

ρv · dS = 0 . (18)

The first term on the left hand side represents the (signed) rate of change of mass in the volume.
Since in a small time interval dt, a volume of matter dV = vdt · dS flows out through the surface
element dS, the second term denotes the (signed) rate of mass loss from the volume through its
surface. Mass conservation expressed through the vanishing of the right hand side implies that if
mass is lost by flow through the surface there must be a corresponding decrease in the mass in the
enclosed volume, and conversely18.

Applying Gauss’ theorem the surface integral in eq. (18), and using that the volume is arbitrary,
we arrive at the equation of continuity due to Euler (1753),

∂ρ

∂t
+ ∇ · (ρv) = 0 . (19)

The zero on the right hand side explicitly states that there are no local sources of mass in classical
mechanics. Pulling the second term on the left over to the right, the equation of continuity may of
course also be viewed as an equation of motion for the mass density field, expressing the local time
derivative of the density, ∂ρ/∂t, in terms of the instantaneous values of the density and velocity
fields.

It is instructive to look at the continuity equation from the point of view of a particle following
the flow. The path x(t) of such a particle is a solution to the ordinary differential equation

dx(t)
dt

= v(x(t), t) . (20)

Differentiating ρ(x(t), t) with respect to t, the rate of change of the mass density along the path

17Here we shall only be concerned with fixed (static) volumes, although in full generality one must also consider
time-dependent volumes, generically called control volumes, that move around in any way one pleases [1].

18This formulation of mass conservation may initially appear a bit awkward. For some readers, eq. (18) is easier
to understand if the second term on the left is moved over to the right, such that mass conservation now states that
the rate of change of the mass in a volume equals the (signed) rate of mass flow into the volume through its surface.
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of the particle, also called the comoving time derivative, becomes19,

dρ

dt
=

∂ρ

∂t
+ (v ·∇)ρ . (21)

Using the mathematical relation, ∇ · (ρv) = (v ·∇)ρ+ ρ∇ ·v, the equation of continuity (19) may
be reformulated as,

dρ

dt
= −ρ ∇ · v . (22)

This form of the continuity equation shows that the comoving rate of change of the density is
proportional to the divergence of the velocity field20. For the volume per unit mass, V = 1/ρ, we
obtain from (22),

dV

dt
= V ∇ · v , (23)

which shows the divergence must vanish everywhere, ∇ · v = 0, in an incompressible material21.

3.2 Momentum balance

The momentum of a particle is defined as the product of its mass and velocity, p = mẋ, and
Newton’s Second Law (1) states that the rate of change of momentum equals force, ṗ = F .
Due to its linearity this equation retains its form when summed over a collection of particles. In
Newtonian particle mechanics, momentum balance simply expresses that the rate of change of the
total momentum of any fixed collection of particles always equals the sum of all the forces acting on
the collection. Equivalently, one may read this statement as saying that the (signed) momentum
produced by the total force on a body of fixed mass is always accumulated in the body.

In continuum mechanics the momentum of a material particle of mass dM = ρ dV is v dM =
ρv dV . Taking into account that momentum may be carried by the mass flow through the surface
S of a volume V , global momentum balance takes the form,

d

dt

∫

V

ρv dV +
∮

S

ρv v · dS = F , (24)

where F is the total force (7). On the left hand side we find the rate of change of the momentum
contained in the volume plus the (signed) rate of momentum flow out of the volume. If these two
terms canceled each other, momentum would like mass be strictly conserved, but since the total
force on the right hand side in general does not vanish, the momentum of a system is in general
not conserved22. Reading from right to left, this equation expresses that the momentum produced
by all the forces acting on the material must either be accumulated in the volume (the first term
on the left hand side) or leave through the surface (the second term).

19There is a bit of ambiguity in this notation when the time-dependent path is not explicitly kept in the argument.
Often the mixed time and space derivative operator D

Dt
= ∂

∂t
+ v(x, t) ·∇, called the material time derivative, is

defined. This operator can be applied to any field and produces a field which when evaluated on the path of the
particle equals the comoving time derivative of the field.

20Eq. (22) also brings contact with the Lagrangian representation, because the general particle path is a function
of the initial position x0 of the particle at t = t0, i. e. x(t) = f(t, x0, t0).

21The vanishing of the divergence does not imply that the density takes the same value everywhere. A boulder
is by most counts incompressible, but may have a spatially varying density due to local variations in the material
composition. Eq. (22) with ∇ · v = 0 then tells us the rather self-evident fact that near any particular grain, the
density is always the same, even when the boulder rolls ands skips down a mountain side.

22Momentum is, however, conserved (i. e. constant) for an isolated system in a comoving volume, subject to no
environmental forces. Since a system plus its total environment is isolated, it follows that any change in momentum
of a non-isolated system can be accounted for through the exchange of momentum with its environment, described
above by the external forces. Momentum balance is for this reason often called momentum conservation, although
here we shall reserve the term “conservation” to apply only to strictly conserved quantities, such as mass.
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Applying again Gauss’ theorem to the surface integral, and using the expression (8) for the
total force, we arrive at the local equation of momentum balance,

∂(ρv)
∂t

+ ∇ · (ρvv) = f + ∇ · σσσᵀ . (25)

On the left hand side it has the same general form as the equation of continuity (19), with the
mass density ρ replaced by the (vector) momentum density ρv. The right hand side represents the
effective density of force acting on a material particle, also called the local source of momentum.

Using the product rules for differentiation, the left hand side of the above equation may be
simplified to,

∂(ρv)
∂t

+ ∇ · (ρvv) = v
∂ρ

∂t
+ ρ

∂v

∂t
+ v∇ · (ρv) + ρ(v ·∇)v = ρ

(
∂v

∂t
+ (v ·∇)v

)
,

where in the last step the continuity equation (19) has been used to eliminate the first and third
terms. Finally this brings us to the conventional form of Cauchy’s equation (1827),

ρ

(
∂v

∂t
+ (v ·∇)v

)
= f + ∇ · σσσᵀ . (26)

Solved for ∂v/∂t, it becomes an equation of motion for the velocity field. Together with the
equation of motion for the mass density obtained from the continuity equation and a specification
of the volume force f and the stress tensor σσσ through suitable constitutive equations, we have
established the general foundation of non-relativistic continuum dynamics23.

Since the parenthesis on left hand side is of the same form as the comoving time derivative of
the density (21), it represents the comoving time derivative of the velocity field, also called the
material acceleration,

w =
dv

dt
=

∂v

∂t
+ (v ·∇)v . (27)

Multiplying with the volume element dV , we may interpret Cauchy’s equation (26) as Newton’s
second law (1) applied to comoving material particles (which by definition have constant mass).

Materials differ, as mentioned before, only by the form of their stress tensors. Fluids are
generically characterized by stresses that only depend on the velocity field, and Cauchy’s equation
for fluids typically turns into a parabolic partial differential equation (see below). If the stresses
only depend on the displacement field gradients, the material is generically said to be elastic. For
such materials it is best to eliminate the velocity field, using that it (in the Euler representation)
may be written as the comoving time derivative of the displacement field,

v =
dx

dt
=

du

dt
=

∂u

∂t
+ (v ·∇)u . (28)

Combined with Cauchy’s equation, it follows that elastic materials are typically governed by hy-
perbolic partial differential equations. Although the above equation may be solved for the velocity
field in terms of the displacement field24, it is often better to view it as an independent (local)
equation of motion for the displacement field. Finally, materials that depend on both displacement
and velocity are generically called viscoelastic.

23Mass conservation and momentum balance are also called Euler’s laws of motion [7].
24Eq. (28) is an implicit equation for v with solution

v =
∂u

∂t
· (1−∇u)−1 ,

where the last factor is the inverse of the Jacobian matrix ∂x0,i/∂xi = δij − ∇iuj = (1 − ∇u)ij . For small
displacement gradients |∇iuj | ¿ 1 this factor can be ignored in the leading approximation, such that v ≈ ∂u/∂t.
In the same approximation one also finds w ≈ ∂v/∂t ≈ ∂2u/∂t2.
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3.3 Incompressible Newtonian fluid

The simplest full-fledged example of a continuum dynamics is offered by an incompressible fluid
with constant density ρ and viscosity η, for which the constitutive equations take the Newtonian
form25,

σij = −p δij + η (∇ivj +∇jvi) , (29)

where p is the pressure field. Inserting this into Cauchy’s equation (26) and including the incom-
pressibility condition derived from the continuity equation (19) for constant density, we obtain the
simplest form of the Navier-Stokes equations in a field of gravity26,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= ρg −∇p + η∇2v , ∇ · v = 0 . (30)

If gravity is specified, for example constant, these equations close among themselves. Although
superficially simple, the nonlinearity of the material acceleration on the left hand side makes the
space of solutions extremely complex, as witnessed by the richness of form displayed by a waterfall.
It is not even known whether these equations have smooth non-singular solutions27. Physically,
the nonlinearity opens for chaotic time evolution which may lead to turbulence, so well-known
from everyday dealings with fluids. After more than hundred years of intense studies, there is still
no complete and accepted theory of turbulence.

In an incompressible fluid, the pressure is not directly related to the density by an equation
of state (14), but rather determined by the divergence condition. This can be explicitly seen by
calculating the divergence of the Navier-Stokes equation (30), leading to

∇2p = ρ∇ · (g − (v ·∇)v) . (31)

Evidently, the pressure is determined by Poisson’s equation, and thus a non-local function of the
velocity field. Although the first Navier-Stokes equation is local in the sense that the rate of change
of the velocity field in a given point, ∂v/∂t, only depends on the fields in the immediate vicinity
of this point, the inherent non-locality of the pressure implies that any local change in the velocity
field is instantly communicated to all other parts of the fluid.

That is of course unphysical. Truly incompressible fluids do not exist, and in real compressible
fluids the speed of sound sets an upper limit to the propagation of small-amplitude disturbances28.
In simulations of incompressible fluids, the instantaneous Poisson equation for pressure also creates
trouble, because it must be solved separately for each step in time to secure the continued vanishing
of the divergence. Incompressibility is nevertheless always an important approximation. The
Navier-Stokes equations for compressible fluids eliminate of course the problem of infinite sound
speed, but the price to pay is that the system of differential equations becomes stiff, and more so
for nearly incompressible fluids where flow velocities are everywhere much smaller than the sound
velocity.

25Viscosity represents internal friction in the fluid caused by neighboring layers of fluid “rubbing” against each
other. Since a constant velocity field should not give rise to friction, the stress tensor can in the linear approximation
only depend on the velocity gradients ∇ivj . Requiring the stress tensor to be symmetric, one arrives at the above
expression.

26Credited to Navier (1822) and Stokes (1845). For η = 0 the Navier-Stokes equation degenerate into the Euler
equation (1755). Since all classical fluids are viscous, we shall not discuss the Euler equation here.

27Among the seven Millenium Prizes, each of one million dollars, offered by the Clay Mathematics Institute of
Cambridge, Massachusetts, one concerns precisely the existence of smooth, non-singular solutions to (30) [8].

28Large amplitude disturbances can propagate much faster than the speed of sound in the form of shock waves. It
should also be mentioned that in spite of the locality of the equations of motion, any solution to a diffusion equation
(such as the Navier-Stokes equation with non-vanishing viscosity) has a Gaussian tail that even for arbitrarily small
time intervals stretches all the way to infinite distances. But even if disturbances in principle can move with infinite
velocity, the Gaussian damping implies that the diffusion front effectively only runs ahead of the front of a sound
wave for a tiny time interval, satisfying t < η/ρc2S where cS is speed of sound in the fluid.
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3.4 Compressible Newtonian fluids

All fluids are in fact compressible, but behave as effectively incompressible when flow speeds are
much smaller than the speed of sound, cS . Provided the measurement precision is everywhere larger
than the corrections due to the finite sound speed, the fluid may be taken to be incompressible.
Compressibility always becomes important at sonic speeds and above, and at very high frequencies
(ultrasound).

The stress tensor for isotropic compressible Newtonian fluids takes the more general form,
analogous to the form of the stress tensor for linear elastic materials (16),

σij = −p δij + η(∇ivj +∇jvi) +
(

ζ − 2
3
η

)
δij∇ · v , (32)

where p = p(ρ, T ) is the thermodynamic pressure given by the equation of state, and the parameter
ζ is the so-called expansion viscosity. The Navier-Stokes equation now becomes,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= ρg −∇p + η∇2v +

(
ζ +

1
3
η

)
∇∇ · v . (33)

If the temperature field is specified, for example a constant, this equation together with the equation
of continuity (19) and the equation of state(14) form a complete set of five coupled partial differ-
ential equations for the density ρ, the pressure p, and the three velocity components (vx, vy, vz).

The most important boundary condition is the no-slip condition, which requires the velocity
field to vanish at any solid wall. The velocity component normal to the wall must vanish, because
the fluid cannot penetrate into the wall. The tangential component must also vanish, because of
viscous friction which would otherwise generate infinite restoring stresses if the velocity jumped. At
an open surface between two different fluids, the normal velocity component must be continuous for
the fluids to stay in contact, and the tangential component must as before be continuous because
of viscosity29. Furthermore, as discussed before, the stress vector must also be continuous, whereas
the pressure in general will jump at an interface because of the different viscosities. Pressure loses
in fact much of its intuitive appeal, known from hydrostatics, when it comes to materials with
non-trivial constitutive equations.

4 The heat equation

The mechanical equations of continuum physics tell, however, only half the story. Except for ide-
alized circumstances, for example enforced constant temperature, heat also plays a role in almost
all physical and chemical systems. Not only do all materials conduct heat, but the constitutive
equations depend in general on temperature, either explicitly as in the equation of state, or im-
plicitly through the temperature dependence of the material parameters. From the First Law of
thermodynamics generalized to continuous matter and Cauchy’s equation, a local equation of en-
ergy balance may be derived. Using thermodynamic relations this equation can be converted into
a parabolic partial differential equation for the temperature field, also called the heat equation,
which in simple matter takes the form of a diffusion equation.

29It should be mentioned that in supersonic flows, shock fronts may arise that display very rapid transitions in
velocity as well as in density, temperature, and pressure. Shocks do not correspond to interfaces between different
fluids but take place inside the volume of a homogeneous fluid. In nearly inviscid fluids, the shock fronts are so
narrow that they may (in fact must) be represented by true discontinuities.
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4.1 Energy balance

The First Law of Thermodynamics states that a change in the total energy of a system is either
caused by heat added to the system or by work performed on it30. In continuum physics it turns
out to be most convenient to factor out the mass density and write the energy density as ρ ε where
ε is called the specific energy, i. e. the energy per unit of mass31. Taking into account that energy
can be transported through the surface of a body, we obtain the equation of global energy balance

d

dt

∫

V

ρ ε dV +
∮

S

ρ ε v · dS =
∫

V

h dV −
∮

S

q · dS +
∮

S

∑

ij

v · σσσ · dS . (34)

The left hand side takes the now familiar form of the rate of change of energy in the body’s volume
plus the rate of energy flow out of the volume. The first term on the right hand side represents the
production of heat by chemical and nuclear processes at the local rate h(x, t), whereas the second
represents the conduction of heat into the volume through its surface with current density q(x, t).
The last term is the rate of work of the contact forces, calculated as the scalar product of the local
velocity v and the surface force dF = σσσ · dS. Converting as before the surface integrals to volume
integrals by means of Gauss’ theorem, we obtain the equation of local energy balance,

∂(ρ ε)
∂t

+ ∇ · (ρ εv) = h−∇ · q +
∑

ij

∇j(viσij) . (35)

The local source terms on the right hand side reflect the double origin of energy change, heat or
work, as stated by the First Law. Using the continuity equation (19) the left hand side may (as we
did for momentum balance) be rewritten as ρdε/dt, where dε/dt = ∂ε/∂t+(v ·∇)ε is the comoving
time derivative.

From ordinary Newtonian particle mechanics, we expect that the energy of a material particle
is composed primarily of its kinetic energy 1

2v2dM , and its potential energy ΦdM in an external
gravitational potential Φ(x), assumed here to be time independent. This leads us to decompose
the specific energy into a sum of three contributions,

ε =
1
2
v2 + Φ + u , (36)

where the last term u represents the specific internal energy of the material, due to its state of
compression, temperature, and chemical composition. From this expression we obtain the comoving
time derivative,

ρ
dε

dt
= ρv · dv

dt
+ ρ(v ·∇)Φ + ρ

du

dt
= v · (f + ∇ · σσσᵀ)− v · ρg + ρ

du

dt
, (37)

where we in the last step have used Cauchy’s equation (26) in the form ρdv/dt = f + ∇ ·σσσᵀ, and
the definition of the gravitational field (4). Inserting this into the local energy balance (35) and
substituting the effective force density (8) (with f = ρg), we arrive at the equation of internal
energy balance,

ρ

(
∂u

∂t
+ (v ·∇)u

)
= h−∇ · q +

∑

ij

σij∇jvi . (38)

30The First Law is strictly speaking a law of energy balance. It is, however, often called energy conservation,
because energy is conserved for isolated systems, implying that for a non-isolated system any change in a system’s
energy may be expressed through its exchange of energy with the environment (see also footnote 22).

31Mass conservation is the deeper reason for the importance of specific energy (and other specific quantities).
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The first source terms represent as before the rate of local heat production and conduction, whereas
the last represents the rate of local mechanical work of the stresses in the material, i.e. work due
to local compression as well as to local internal friction, also called dissipation. It is the last term
which provides the heat for melting the surface of a meteorite entering the atmosphere, and even
for its complete evaporation.

4.2 Heat equation for incompressible fluid

The conversion of the equation of internal energy balance into a dynamic equation for the temper-
ature field requires in general the full apparatus of thermodynamics [9, 10]. To elucidate the steps
we consider the simplest of all materials, an incompressible Newtonian fluid with constant density
and stress tensor given in (29). We shall, somewhat unphysically32, assume that the density and
viscosity do not depend on the temperature. The specific energy can in that case only depend
on the local temperature, and for simplicity we shall assume that the relation is linear, u = cv T
where cv is the specific heat at constant volume (heat capacity per unit of mass). Finally we adopt
Fourier’s law

q = −k∇T , (39)

where the positive coefficient k is called the thermal conductivity. Fourier’s law expresses that heat
always flows against the temperature gradient, i. e. from hot to cold33. Putting it all together we
arrive at the heat equation

ρcv

(
∂T

∂t
+ (v ·∇)T

)
= k∇2T + h +

1
2
η

∑

ij

(∇ivj +∇jvi

)2
. (40)

The last term has here been rewritten in a symmetric form which clearly exposes that it is always
positive, showing that the internal viscous friction always adds heat to the fluid34. The coupling
between the velocity field and the temperature field on the left hand side expresses the well-known
bathroom knowledge that heat can be transported (advected) by moving fluid35.

The derivation of the heat equation for a general compressible fluid is as mentioned considerably
more involved[9, 10]. If the flow speed is much smaller than the velocity of sound, the resulting
equation becomes nearly identical to eq. (40) except that the on the left hand side cv is replaced
by the isobaric specific heat capacity cp, and that on the right hand side is added an extra positive
dissipation term, ζ(∇ · v)2, representing the contribution from the expansion viscosity.

The boundary conditions for the temperature field depend on the kind of walls that enclose
the fluid. At a wall that conducts heat, the temperature field must be continuous, whereas at an
insulating wall that does not conduct heat it follows from Fourier’s law that the gradient of the
temperature must vanish.

32Most materials expand in fact slightly when they are heated, so that the density decreases. In combination
with gravity, even a tiny decrease in the density of heated fluid may cause it to rise buoyantly and create convective
currents in a fluid otherwise at rest. Heat driven flow is of great importance (and sometimes a nuisance) in the
kitchen as well as in industry.

33The positivity of the thermal conductivity is a consequence of the Second Law of Thermodynamics.
34In most practical settings this dissipative heat production is tiny and can be disregarded. There are important

cases where viscous friction heats the fluid significantly, for example in a journal bearing with failing circulation of
the lubricant.

35For a fluid at rest, v = 0, with no heat production, h = 0, the heat equation simplifies to Fourier’s famous
diffusion equation for the temperature field,

∂T

∂t
= κ∇2T ,

where κ = k/ρcv is the thermal diffusivity.
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5 Laws of balance and conservation

In the preceding discussion we have distinguished sharply between mass conservation and momen-
tum and energy balance. As mentioned already in footnotes 22 and 30, the distinction is perhaps
more a matter of taste than of substance, because momentum and energy are in fact conserved for
isolated bodies, and consequently, for a non-isolated body a change in momentum or energy can
be accounted for through exchange of these quantities with the environment

The local laws of conservation and balance that we have so far derived may all be written in
the form,

∂D

∂t
+ ∇ · J = S (41)

where D is a density, J is a current density, and S is the source. For mass, momentum and energy
we have36,

D → ρ , J → ρv , S → 0 ,

D → ρv , J → ρvv , S → f + ∇ · σσσᵀ ,

D → ρε , J → ρεv , S → h−∇ · q + ∇ · (v · σσσ) .

Notice that the “current density” for momentum is actually a tensor (Ji → Tij = ρvivj). To
facilitate readability, the source of energy has been written in a compact matrix form.

Moving the source terms that are divergenses over to the current density we obtain,

D → ρ , J → ρv , S → 0 ,

D → ρv , J → ρvv − σσσᵀ , S → f ,

D → ρε , J → ρεv + q − v · σσσ , S → h .

In the absence of volume forces such as gravity (and electromagnetism), f = 0, and heat pro-
duction, h = 0, the equations of balance may formally be written as true conservation laws.
Mathematically, and especially for numerical simulations, it may be convenient to cast the laws of
balance in this common form, whereas physically it is conceptually better to retain the distinction
between advection of, for example, momentum and the contact forces acting on the surface37.

To obtain the above conservation laws we had to leave out all true volume forces like gravity and
electromagnetism. This can be traced back to our omission of the dynamical laws for gravitational
and electromagnetic fields. Were these included, the equations of motion of momentum and energy
for the coupled systems could in fact have been written as conservation laws. Whereas it is
reasonably straightforward to include the dynamics of electromagnetic fields (i. e. the Maxwell
equations), gravity requires the full apparatus of general relativity.

6 Beyond traditional continuum physics

The laws of mass conservation, momentum balance and energy balance, constitute the general
framework for establishing the equations of motion in continuum physics. Extensions to nonlinear

36One may wonder what happened to angular momentum. For classical continua angular momentum balance
is, however, like kinetic energy balance, a simple consequence of local momentum balance, as expressed through
Cauchy’s equation (26). Practically, it means that any exact solution to the local equations of continuum dynamics
automatically satisfies all the global laws of conservation and balance, including angular momentum balance. For
approximate solutions, for example numerical simulations, the global laws impose useful constraints that may be
used to judge the precision of the approximation.

37Although formally correct, it does seem strange to say about a person standing still on the floor that the
momentum constantly transferred to all his parts by the field of gravity is leaving through the contact area of his
feet, rather than saying that gravity is balanced by the contact forces acting on his feet.
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elastic, viscoelastic or any other types of materials are in this respect straightforward[12], although
the details can be highly complex and involve further equations of motion for other quantities.

Leaving the realm of classical (Newtonian) physics and entering the subject of special or general
relativistic continuum physics, it is necessary to modify the mechanical equations of motion, even if
the fundamental conservation laws can be maintained [9]. The principle of mass conservation, which
is so important in non-relativistic physics, is generally lost in relativity because of the equivalence
of mass and energy. Instead there are strict laws of baryon (and lepton) number conservation which
under suitable circumstances may mimic mass conservation38, and lead to a continuity equation for
baryonic (or leptonic) mass. Relativistic flows are essentially only known from the extreme objects
encountered in astrophysics and subnuclear physics. For the most compact astrophysical objects,
for example neutron stars and black holes, gravitational fields are strong and general relativity has
to be invoked. In other cases gravity plays little or no role, as for example in high-energy heavy-ion
collisions, and the much simpler special theory of relativity can be brought into play39.

Although traditional continuum physics is always an approximation to the underlying discrete
atomic level, this is not the end of the story. At a deeper level it turns out that matter is best
described by another continuum formalism, relativistic quantum field theory, in which the discrete
particles — electrons, protons, neutrons, nuclei, atoms, and everything else — arise as quantum
excitations in the fields. Relativistic quantum field theory without gravitation emerged in the
twentieth century as the basic description of the subatomic world, but in spite of its enormous
success it is still not clear how to include gravity. Just as the continuity of macroscopic matter
is an illusion, the quantum field continuum may itself one day become replaced by even more
fundamental discrete or continuous descriptions of space, time, and matter. It is by no means
evident that there could not be a fundamental length in nature setting an ultimate lower limit to
distance and time, and theories of this kind have in fact been proposed. It appears that we do
not know, and perhaps will never know, whether matter at its deepest level is truly continuous or
truly discrete.

38Provided inelastic collisions, decay, and matter/antimatter annihilation can be disregarded.
39See for example the recent review [11] of numerical methods in this strongly evolving field.
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