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Abstract 
Correlation measurements on the states of two-level atoms having passed 
through a micromaser at different times can be used to infer properties of 
the quantum state of the radiation field in the cavity. Londshort) corre- 
lation length in time is to som extent associated with super(sub)-Poissonian 
photon statistics. The correlation length is also an indicator of a phase 
structure much richer than what is revealed by the usual single-time 
observables, like the atomic inversion or the Mandel quality factor. In rea- 
listic experimental situations the correlations may extend over many times 
the decay time of the cavity. Our assertions are veri6ed by comparing theo- 
retical calculations with a high-precision Monte-Carlo simulation of the 
micromaser system. 

The one-photon atomic transition micromaser [ 1-43 pro- 
vides an impressive experimental realization of the inter- 
action between a two-level atom and a second quantized 
single-mode electromagnetic field. The microlaser [SI is the 
counterpart in the optical regime. Here we focus our interest 
on the micromaser system for which quantum collapse and 
signs of quantum revival have been observed [6]. A super- 
conducting niobium cavity, cooled down to a temperature 
of T = 0.5K (corresponding to a thermal photon 
occupation number of n b  = 0.15 at the maser frequency of 
21.5 GHz), has been used to study the quantum state of the 
radiation field [7, 81. The high quality factor of the cavity 
corresponds to a photon lifetime of T,,, = 0.2 s. 

In this context, a basic physical feature is the close con- 
nection between the cavity’s steady-state photon statistics 
and the fluctuations in the number of atoms in the lower 
maser level, for a fixed cavity transit time z of the atoms [9, 
103. The experimental results of [7] are clearly consistent 
with the appearance of non-classical, sub-Poissonian sta- 
tistics of the radiation field, and exhibit the intricate relation 
between the atomic beam and the quantum state of the 
cavity. 

In this letter we study in more detail this relation, and 
discuss the role of correlations for revealing the quantum 
state of the micromaser system. The sequence of outgoing 
atoms is viewed as a one-dimensional binary spin chain, 
each spin representing the state of an atom after the inter- 
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action with the cavity. The spin average is closely related to 
what is usually called the atomic inversion. From the 
second-order correlation functions of the spin chain we are 
immediately led to the physical concept of an atomic corre- 
lation length tA , characterizing the long-range correlations 
in time in the outgoing atomic beam. 

By means of Monte Carlo simulations we study the 
dynamical generation of such correlations in the atomic 
beam and how these would show up in an actual experi- 
mental situation. We discuss the set of characteristic 
dynamic phases revealed by r A ,  and the implications for the 
underlying photon distribution in the cavity. 

The theory of the micromaser has been developed in [SI, 
and we follow the notation of that paper. In the experi- 
ments, excited atoms are injected into the cavity at a rate R 
high enough to pump up the cavity from vacuum, i.e. R > 
y = 1/T,,,, or N > 1 in terms of the dimensionless flux vari- 
able N = R/y. The atom-field interaction time z is so much 
shorter than the average time between two atoms, T = 1/R, 
that with a very high probability only one atom at a time is 
found inside the cavity [ll]. Since z is also much shorter 
than T,,,, damping effects may be ignored while the atom 
passes through the cavity. If an atom enters at time t and 
interacts for a time z, then the statistical operator of the 
whole system changes to p(t + z) = e-iHrp(t)eiHr, where H is 
the total Hamiltonian of the atom-field interaction. It can be 
approximated by the Jaynes-Cummings (JC) Hamiltonian 
[12]. This Hamiltonian has the property that it only affects 
the reduced density operator pF(t) = Tr,[p(t)] of the radi- 
ation field along its diagonals, so that if pF(t) is diagonal - 
which we assume - then so is pF( t  + 2). Writing pF( t )  = 

pn( t )  1 n)(n I we may express the above interaction as a 
linear operator acting on the infinite-dimensional vector 
p ( t )  = {po ( t ) ,  pl(t), . . .}, i.e. as p ( t  + 7) = M(z)p(t), where 
M = M +  + M -  is composed of two parts, representing 
either that the photon occupation number is unchanged (the 
atom is in state +), or that it is increased by 1 due to the 
decay of the atom (the atom is in state -). From the JC- 
model we have 

where at resonance between the cavity mode and the atomic 
transition qn(z) = sin’(S2zfi). The quantity SZ is the single- 
photon Rabi frequency [12]. 
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Let the next atom arrive in the cavity after a time T B z. 
During this interval the cavity damping is described by a 
conventional master equation, which also preserves the 
diagonal form of the cavity density matrix. It may be 
brought to the form p(t)  = - yLp(t), where y is the charac- 
teristic damping constant of the cavity and L is the matrix: 

Lnm = (nb f l)Cn dn, m - (n  f l) dn+ 1 ,  m1 

+ nb[(n + l) dn, m - 6n- 1, rnl  (2) 

The statistical state of the cavity when the next atom amves 
is thus given by 

p(t + T )  = e-yLTM(z)p(t). (3) 

The time intervals between atoms are assumed to be 
Poisson-distributed M ( T )  = exp(-RT)R d T  with an 
average interval T = 1/R (for a discussion of non- 
Poissonian beam statistics see [ 13]), and consequently we 
may average the exponential of eq. (3) to get 

(4) 

The equation for statistical equilibrium thus becomes 
M ( z ) j  = (1 + yTL)j ,  which has the solution [9, 141 for 
n > l  

( 5 )  

The overall constant p o  is determined by c2=o p n  = 1. 
Let the state of an atom emerging from the cavity be 

characterized by a binary “spin” variable s = 5 1 where + 1 
denotes the excited level. In statistical equilibrium the prob- 
ability 9 ( s )  of finding the atom in the state s after the inter- 
action is given by 9 ( s )  = uTMSj where U is a vector with all 
entries equal to one, representing the trace over the cavity. 
If the detection efficiency is not 100% these formulas are 
modified accordingly [l5]. The average spin is 
p = (s) = 9(+) - 9( -) (and the atomic inversion -p/2).  
Its variance is cz = ((s - p)’)  = 1 - p2. From the spin 
average we may in statistical equilibrium determine the 
average occupation number of the cavity mode (ri) = nb 

The joint probability p k ( s 1 ,  s2) for observing the states of 
two atoms, with k unobserved atoms between them, is given 

+ (1 - p)/2yT. 

by 

where the matrix S = S(z, T )  is defined in eq. (4). From this 
we derive the k-step correlation function ( s s ) ~  = 

csl, s2 S l S Z  p k ( s l ,  s2) = 9k( + +) + p k ( - Y  -) - 9k( + 3 -1 - 
p k ( - ,  +). It iS easy to show that g k ( + ,  -) = g k ( - - ,  +) 
using the stationarity condition for p .  The normalized 
atomic correlation is y t  = ( ( s s ) k  - ( ~ ) ~ ) / c ~ .  

The state of the cavity can be characterized by the 
average ( i i )  of the occupation number operator ri and 
higher-order observables such as the Mandel quality factor 
Qf = ((ri - ( r i ) ) ’ ) / ( f i )  - 1, which has the property of being 
negative for sub-Poissonian (and non-classical) states of the 
field [16]. We may further characterize the state of the radi- 

ation field by correlations between cavity observables at dif- 
ferent times. If for example the occupation number ri is 
measured twice, with k unobserved atoms passing in 
between, we consider the correlation function 

( f i f i ) k  = U T f i S k f i j  (7) 

As before we define the normalized correlation to be y: = 

If k is sufficiently large we define the asymptotic corre- 
( ( A A ) k  - (ri)’)/((ri - ( i i>)2>a 

lation lengths tA and tF by 

which isolates the k-dependence. The R-factor secures that 
the correlation lengths are measured in units of physical 
time. That t =- tA  = tF follows from the fact that the time 
evolution is governed by the same matrix in both eqs (6) 
and (7). The correlation length is therefore a convenient 
probe of the dynamics of the micromaser system. 

The generation of a sequence of outgoing atoms is a 
Markov process defined by the matrix S = (1 + 
yTL)- lM(z), and correlations over long times are governed 
by its eigenvalues A,. They can be shown to be real, non- 
degenerate and bounded by 1 = 1, > A, > - - - > 0 [17]. 
Denoting the corresponding right (left) eigenvectors by p(”)  
(U(”)) we can decompose Sk as 

m 

(9) 

The contribution to yf or y t  from the 1, = 1 component 
of Sk cancels out and it is the next-to-leading eigenvalue 
1, that determines the correlation length through R t  = 
- l/ln 1,. 
In order to determine ( we have used two methods, a 

Monte Carlo simulation of the dynamical process and a 
direct numerical calculation of 1,. We consider the maser 
transition 63p,,, t) 6ld,,, of *’Rb with the single-photon 
Rabi frequency SZ = 44 kHz. We choose the rate R to be 50 
atom$ in order to be close to the experimental situation of 
[7]. In the MC simulation we used a sample of lo6 atoms 
for 100 different values of z (the corresponding real experi- 
ment would take a little less than a month to perform non- 
stop with 100% measuring efficiency!). We have compared 
the MC-data and the theoretical average of the atomic 
inversion as well as the Mandel quality factor. The agree- 
ment between theory and the numerical experiment is excel- 
lent and constitutes a consistency check of our 
computational method. The correlation length is measured 
by a least-squares fit to the data for 1 < k < K, where K is 
determined by the onset of noise which almost universally 
happens when the correlation has fallen to about 0.1%. 
Typical values of K range from 10 to 250, depending on 
whether the correlation quickly or slowly drops into the 
noise. This leads to quite different reliability levels for the 
extraction of the values of the correlation length. Our results 
are presented in Fig. 1. The error bars on the MC data rep- 
resent the precision of the fit to the exponential form eq. (8), 
but do not include the systematic errors due to the difficulty 
in reaching the asymptotic region. 

The other numerical method we have used is to find the 
roots of the equation det [M - 1(l + yTL)] = 0, by trun- 
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Fig. 1. Comparison of theory (solid curve) and MC data (dots) for the 
correlation length R&. The dotted and dashed curves correspond to sub- 
leading eigenvalues (&, s) of the matrix S. The parameters are those of the 
experiment in [7J 

cating the matrix to finite dimension. These roots are the 
eigenvalues of S = (1 + yTL)- M. Writing the above equa- 
tion as an eigenvalue problem for the matrix M - aL with 
a = AyT, we recognize that it is a Jacobi matrix (with non- 
vanishing elements only on the main diagonal and its two 
neighbouring subdiagonals). The off-diagonal elements are 
strictly positive for non-negative real a. It is known [18] 
that such a matrix (for k e d  a) has only real and non- 
degenerate eigenvalues. We have shown that the eigenvalues 
of S also have these properties, and that 1, < 1, which is 
required for the convergence of the stochastic process. 
Numerical calculations of 1, converge rapidly for matrices 
of dimension above 50. They also agree well with the MC 
simulation, as can be seen in Fig. 1. For z N 20-3Ops the 
MC result predicts shorter correlation lengths than the 
theoretical calculation, but we can see that they agree with a 
subleading eigenvalue. We surmise that the reason for this is 
that contributions of the subleading components of S are 
large for those values of k that can be reached in the MC 
calculation. In order to extract the actual long-time corre- 
lation length in this parameter region, it would be necessary 
to go much larger k and to increase the statistics consider- 
ably. Similar difficulties are expected to be encountered in a 
real experiment. 

The example of the correlation lengths shown in Fig. 1 
have typical parameters of the damping and the flux corre- 
sponding to a real experiment [17]. The amount of struc- 
ture found in this figure is at first glance rather surprising. 
The mean photon number shows comparatively little struc- 
ture in this region. We shall now explain the origin of struc- 
ture in this figure, and refer to Fig. 2, when necessary, which 
depicts the logarithm of the correlation length for larger flux 
values. The natural scaling variable in the large flux limit is 
6 = g z f l  which is the one used in Fig. 2. Details of the 
theoretical derivations will be presented in [17]. 

In the first part of Fig. 1, for 0 < z < 20 ps, the correlation 
length shows a peak around z = 7.2 ps which corresponds to 
the maser transition at 8 = 1. For smaller values of z the 
field of the cavity has thermal statistics with average 
number of photons independent of the flux N( = R/y) in the 
large flux limit. Above the peak, the average photon number 
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Fig. 2. The logarithm of the correlation length (in units of l/y = N / R )  for 
nb = 0.15 as a function of 0 = g r f i  for various values of N = 10, 20, . . . , 
100. The vertical lines indicate where new local maxima in the photon dis- 
tribution function appear. Notice that for 0 > 0, E 4.494, where the photon 
distribution acquires two maxima, the logarithm of the correlation length 
grows linearly with N for large N .  

grows proportionally with the flux. This peak, which is also 
clearly present in p and Q,,  is well described by a semi- 
classical approximation [9, 191. In Fig. 2 we see that in this 
region the correlation length remains constant in the large 
flux limit except at the maser transition point where it 
actually grows like fl. 

At z N 20 ps, there seems to be crossings of eigenvalues in 
Fig. 1. Looking closer at these points, we find that there is 
no actual crossing, consistent with the result mentioned 
above that there are no degenerate eigenvalues. On the 
other hand, the corresponding eigenvectors, in this case p(') 
and f ) ,  do cross in the sense that the eigenvector corre- 
sponding to 1, after the crossing is very close to p(')  before 
the crossing. This has no analogue in p or Q,. From the 
MC simulation we also see that the system may remain 
dominated by a subleading eigenstate as z passes through 
the transition point. In Fig. 2 we see how this crossing point 
as the flux increases creeps closer to 8, N 4.494, where the 
photon distribution function gets a second maximum [17]. 

Above z N 32 ps the correlation length increases dramat- 
ically. The reason for that can be traced back to the appear- 
ance of two local maxima in the photon distribution 
function, and the tunneling time between them, as indicated 
in Cl91 and calculated explicitly in [17]. We have verified 
that, as the flux R of atoms increases, the maximal corre- 
lation length grows exponentially in this region. For a value 
of R = 200/s (which is merely 4 times the flux in the experi- 
ment of [7]), the correlation length at the leading peak 
extends to 300 times the decay time of the cavity (i.e. a 
whole minute!). Such a violent behaviour is not reflected in 
p or Q, [9, 191. For these quantities the most dramatic 
behaviour is a finite jump in p and a narrow peak of finite 
height in Q, at the second maser transition, which coincides 
with the exponential peak in r. 

The second maser transition occurs when there is a jump 
in the position of the global maximum of the photon dis- 
tribution function. For N = 10 this happens at z N 51.7 ps. 
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The three high peaks at z around 40, 50 and 70ps have, 
however, a different explanation. They are related to the 
well-known trapping states [20] which occur when &) 
vanishes. This happens for Q z f i  = kn with integer k. For 
vanishing nb , this effect truncates the equilibrium photon 
distribution eq. (5)  at a definite photon number. Finite nb 
smoothes out this effect, but it is still amply visible in Fig. 1. 
The dominant trapping peaks are numerically given by 
z = 41.2ps, 50.5ps, 7 1 . 4 ~ ~  which agrees very well with Fig. 
1. In Fig. 2 we see how these peaks are rapidly suppressed 
relative to the leading and exponentially growing tunneling 
peak for larger flux. The trapping peaks occur at constant 
positions in z but move away as f l  in 8, whereas the tun- 
neling peak remains at fixed 8. 
In the semiclassical regime there is a clear connection 

between the long correlation at the maser transition at 
8 = 1 and the large value of Q,, i.e. super-Poissonian 
photon statistics. For 8 > 8, N 4.494, and for large flux, Q, 
likewise has peaks at the same positions as r, namely when 
there are jumps in the position of the global maximum of 
the photon distribution. In this sense there is a clear relation 
between 5 and photon statistics in the cavity. On the other 
hand, at 8, for large flux the Mandel factor remains nega- 
tive while f starts growing exponentially, and this growth 
reveals the appearance of the second local maximum in the 
photon distribution which is not reflected in the single-time 
observables. 
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