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Products of random matrices
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We derive analytic expressions for infinite products of random 232 matrices. The determinant of the target
matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter
characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have
importance as an uncommitted prior in statistical image analysis.
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I. INTRODUCTION

Considerable effort has been invested over the past
century in determining the spectral properties of ensem
of matrices with randomly chosen elements and in discov
ing the remarkably broad applicability of these results
systems of physical interest. In spite of a similarly rich set
potential applications~e.g., in the statistical theory of Mar
kov processes and in various chaotic dynamical system
classical physics!, the properties of products of random m
trices have received considerably less attention. See Ref@1#
for a survey of products of random matrices in statistics a
Ref. @2# for a review of physics applications.

The purpose of the present manuscript is to conside
some detail the limit forN→` of the ensemble of matrice

Y5S 11At

N
X1D

3S 11At

N
X2D •••S 11At

N
XND , ~1!

where t.0 is a real parameter and theXn are reald3d
matrices with all elements drawn at random on a distribut
of zero mean and unit variance. If this distribution has co
pact support, the probability that the matrixY should become
nonpositive definite vanishes forN→`. In one dimension,
d51, it is well known from the law of large numbers th
logY has a Gaussian distribution, but because of the n
commutativity of matrix products, the distribution is muc
more complicated ford>2.

In this paper we derive some general properties for
limiting distribution P(Y) and determine it explicitly ford
52. In Sec. II we establish a compact diffusion equation
the distribution valid for anyd. In Sec. III we derive a simple
expression for any average over the distribution, and
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show that the determinant det@Y# has a log-normal distribu-
tion. Secs. IV and V will be devoted to the determination
the explicit form of P for d52. We shall first write the
diffusion equation using an appropriate parametrization oY.
The resulting partial differential equation will then be solv
subject to the boundary condition thatP(Y) supports only
the identity matrix in the limit oft→0. This explicit solu-
tion will require new integrals involving Jacobi function
The derivation of these integrals will be given in the Appe
dix.

II. THE DIFFUSION EQUATION

The normalized probability distribution is~for given N
and variablet)

PN~Y,t!5K dFY2 )
n51

N S 11At

N
XnD G L

X1 , . . . ,XN

, ~2!

where the integrand is a product ofd functions for each
matrix element ofY and the average runs over all the rando
matrices. Pealing off theNth factor in the product and usin
only that theXn are statistically independent, we derive th
following exact recursion relation

PN~Y,t!5K detF11At

N
XG2d

3PN21FYS 11At

N
XD 21

,t
N21

N G L
X

, ~3!

where the average is over theNth random matrix, here re
namedX. The determinantal prefactor ofPN21 is the Jacobi
determinant arising from the general matrix rule

d@Y2ZM#5
d@Y M212Z#

detF]~ZM!

]Z G , ~4!
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with M511At/N X. Since

]~ZM! i j

]Zk,
5d ikM , j , ~5!

the Jacobian is block-diagonal withd identical blocks, and
the prefactor follows.

The recursion relation~3! is of the Markovian type with
the initial distributionP0(Y,t)5d@Y21#. It converges for
N→` under very general conditions~which we shall not
discuss here! towards a limiting distribution P(y,t)
5 limN→`PN(y,t). Expanding the recursion relation t
O(1/N) and using the fact that all the matrix elements ofX
are statistically independent with zero mean and unit v
ance,

^Xi j &X50, ^Xi j Xkl&X5d ikd j l , ~6!

we obtain to leading order

PN5PN211
t

N S 2
]PN21

]t
1

1

2
d2~d11!PN21

1~d11!Yi j

]PN21

]Yi j
1

1

2
YikYjk

]2PN21

]Yi ,]Yj ,
D ,

with implicit summation over all repeated indices. The a
sumed convergence towards a limiting distribution requi
the expression in the parentheses to vanish in the limit
that

]P
]t

5
1

2
d2~d11!P1~d11!Yi j

]P
]Yi j

1
1

2
YikYjk

]2P
]Yi ,]Yj ,

.

~7!

This is a diffusion equation of the Fokker-Planck type witht
playing the role of time. It must be solved subject to t
initial condition thatP(y,0)5d@Y21#.

Both the diffusion equation and the initial condition a
invariant with respect to an orthogonal transformationY
→M ÁY M, where M is an orthogonal matrix satisfying
M ÁM51. Since the number of free parameters in an
thogonal transformation is12 d(d21), the number of ‘‘dy-
namic’’ variables in the distribution isd22 1

2 d(d21)5 1
2 (d

11). Since the distribution only has support for det@Y#
.0, this number consists ofd independent eigenvalues an
1
2 d(d21) rotation angles in a singular value decompositio

For d51 the solution to Eq.~7! which approachesd@Y
21# for t→0 is

Pd51~Y!5
1

YA2pt
expF2

~ logY1t/2!2

2t G . ~8!

As expected, it is a log-normal distribution.

III. AVERAGES

Remarkably, Eq.~7! may be written in the much simple
form
06612
i-

-
s
o

-

.

]P
]t

5
1

2

]2~YikYjkP!

]Yi ,]Yj ,
~9!

without any explicit reference tod. Defining the average of a
function f (Y) by

^ f &5E f ~Y!P~Y! dY ~10!

with dY5) i j dYi j , we obtain from Eq.~9!

]^ f &
]t

5
1

2 K YikYjk

]2f

]Yi ,]Yj ,
L . ~11!

This equation permits in principle the determination of t
moment of any product of matrix elements. The first two a
found to be

^Yi j &5d i j , ~12!

^Yi j Ykl&5etdd ikd j l . ~13!

The exponential growth of the averages with ‘‘time’’t is a
consequence of the multiplicative nature of the problem.

The determinantD5det@Y# is, according to the definition
of the product~1!, an infinite product of random real num
bers that converge towards unity, and logD must have a
Gaussian distribution according to the law of large numbe
Its mean and variance are, however, different from those
the one-dimensional distribution~8!. The distribution of the
determinant is also an average

F~D !5^d~D2det@Y# !&. ~14!

Using the fact that

]det@Y#

]Yi j
5det@Y#Yji

21 , ~15!

we obtain the following equation forF:

]F

]t
5

1

2
d

]2~D2F !

]D2

5dS F12D
]F

]D
1

1

2
D2

]2F

]D2D . ~16!

Apart from the factord in front, this is identical to the dif-
fusion equation~9! in one dimension. Consequently the d
terminant has a log-normal distribution

F~D !5
1

DA2ptd
expF2

~ logD1td/2!2

2td G , ~17!

which is obtained from Eq.~8! by replacingt by td. The
distribution has support only for positive values ofD. It can
be shown in general~and we shall demonstrate it explicitl
for d52 below! that the distribution of the determinant fac
torizes inP.
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IV. THE CASE dÄ2

The first nontrivial case isd52 where the general matri
is first parametrized using a quaternion or 4-vector notat

Y5S Y01Y3 Y12Y2

Y11Y2 Y02Y3
D . ~18!

In this representation the determinant becomes a metric
two ‘‘space’’ and two ‘‘time’’ dimensions

D5Y0
22Y1

21Y2
22Y3

2 . ~19!

The structure of this expression and the positivity ofD sug-
gest the following parametrization in terms of one imagina
and two real angles:

Y05ADcoshc cosu, ~20a!

Y15ADsinhc cosf, ~20b!

Y25ADcoshc sinu, ~20c!

Y35ADsinhc sinf. ~20d!

The Jacobi determinant of the transformation fro
$Y0 ,Y1 ,Y2 ,Y3% to $D,c,u,f% is simply

J;D sinhc coshc. ~21!

Orthogonal 232 matrices are generated by the matrix (1 0
021),

which is associated withY2. Thus, an orthogonal transfor
mation rotates the anglef, andP(Y,t) must be independen
of f as indicated above.

In these variables the diffusion equation~7! simplifies to

]P
]t

56P16D
]P
]D

1D2
]2P
]D2

1
1

4
~11tanh2c!

]2P
]u2

1
1

4
~ tanhc1cothc!

]P
]c

1
1

4

]2P
]c2

. ~22!

Taking into account the factor ofD in the Jacobi determi-
nant, we replace the original distributionP with the product
of the determinant distributionF(D) given in Eq.~17! and
an as yet unknown function ofc andu,

P5
1

D
F~D !G~c,u!, ~23!

and find thatG satisfies the diffusion equation

]G

]t
5

1

4
~11tanh2c!

]2G

]u2
1

1

4
~ tanhc1cothc!

]G

]c

1
1

4

]2G

]c2
. ~24!

The corresponding normalization integral is found from t
Jacobi determinant,
06612
n

th

y

E
0

2p

duE
0

`

dc2 sinh 2cG~c,u!51. ~25!

This normalization integrals~25! suggest that it is more con
venient to employ still another variable

z5cosh 2c5
Y0

21Y1
21Y2

21Y3
2

Y0
22Y1

21Y2
22Y3

2
. ~26!

With this variable the normalization integral takes the for

E
0

2p

duE
1

`

dzG~z,u!51, ~27!

and the diffusion equation~24! becomes

]G

]t
5

1

4

2z

z11

]2G

]u2
12z

]G

]z
1~z221!

]2G

]z2
. ~28!

This equation must be solved with the boundary condit
that P(Y) in the limit t→0 reduces to a product of delt
functions which select only the identity matrix. This ev
dently requiresY0→1 andY1,2,3→0 and, consequently,D
→1, z→1, andu→0. SinceF(D)→d(D21), the initial
condition takes the form

G~z,u!→d~z21!d~u! ~t→0!. ~29!

The limiting distribution should be approached from abo
~i.e., fromz.1).

The form of the diffusion equation~28! reveals thatG
may naturally be expanded in a Fourier series

G~z,u!5
1

2p (
n52`

`

Gn~z!einu ~30!

with coefficients that obey

]Gn

]t
52

1

4
n2

2z

z11
Gn12z

]Gn

]z
1~z221!

]2Gn

]z2
. ~31!

For the special casen50, we recognize Legendre’s differ
ential operator on the right. The normalization condition on
affectsG0 and becomes

E
0

`

dz G0~z!51. ~32!

The initial condition~29! implies that

Gn~z!→d~z21! ~t→0! ~33!

for all n.

V. EXPLICIT SOLUTION

All that remains is to determine the angular functio
Gn(z). One relatively simple way is to use Sturm-Liouvill
theory, and we now outline the main steps in this procedu
4-3
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The differential operator~‘‘Hamiltonian’’ ! appearing on
the right-hand side of Eq.~31! may be written

H5
]

]z
( z221)

]

]z
2

n2

4

2z

z11
, ~34!

which shows that it is Hermitian. Let the spectral variab
~which denumerates the eigenvalues and may be both
crete and continuous! be denotedr, and letgn

(r )(z) be the
eigenfunction corresponding to the eigenvalueln

(r ) ,

Hgn
(r )~z!5ln

(r )gn
(r )~z!. ~35!

The Hermiticity ofH guarantees that the eigenvalues are r
and that the eigenfunctions are both orthogonal and comp
on the interval 1<z,`,

E
1

`

dzgn
(r )~z!gn

(r 8)~z!5
d r ,r 8

mn
(r )

, ~36!

(
r

mn
(r )gn

(r )~z!gn
(r )~z8!5d~z2z8!, ~37!

with a suitable measure,mn
(r ) .

The solution of the diffusion equation~31! with initial
condition ~33! takes the form

Gn~z,t!5(
r

mn
(r )gn

(r )~1!gn
(r )~z!exp~ln

(r )t!. ~38!

In view of the completeness~37!, these functions indeed sa
isfy the initial conditions att50. The appearance ofgn

(r )(1)
in this expression requires the eigenfunctions to be regula
z51.

We now present the complete solution of the eigenva
problem. ~Further details are given in the Appendix.! The
eigenvalue spectrum contains discrete values~for n>2) as
well as a continuum

ln
(r )5H 2

1

2
n22

1

4
1S n11

2
2kD 2

, k51,2, . . . ,b n

2
c,

2
1

2
n22

1

4
2t2, 0<t,`.

~39!

The properly normalized discrete eigenfunctions are Jac
polynomials

gn
(k)5An11

2
2kS 11z

2 D n/2

P2k
(0,n)~z!, ~40!

while the eigenfunctions in the continuum are Jacobi fu
tions of complex index

gn
(t)5S 11z

2 D n/2

P2(n11)/21 i t
(0,n) ~z! ~41!

with the measure obtained from the integral~36! as

mn
(t)5H t tanhpt, n even,

t cothpt, n odd.
~42!
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The special casen50 was stated without proof by Mehler i
1881 @3#. The general case is proven in the Appendix.

Sincegn
(t)(1)51, the final solution becomes a simple s

perposition of the discrete and continuous contributions

Gn5Gn
disc1Gn

cont ~43!

where the discrete contribution~for n>2) is

Gn
disc~z,t!5S 11z

2 D n/2

(
k51

bn/2c S n11

2
2kD

3P2k
(0,n)~z!e2„n2/211/42[(n11)/22k] 2

…t. ~44!

The continuous contribution is

Gn
cont~z,t!5S 11z

2 D n/2E
0

`

dtmn~ t !

3P2(n11)/21 i t
(0,n) ~z!e2(n2/211/41t2)t, ~45!

with mn(t) given by Eq.~42!. Thus, we arrive at the fina
result. The probability for drawing a given 232 matrix Y is

P~Y,t!5
F~D !

2pD S G0~z,t!12(
n51

`

Gn~z,t!cosnu D
~46!

with F(D) given by Eq.~17! and Gn(z,t) given by Eqs.
~43!–~45!. As noted previously, theGn(z,t) are independen
of the sign ofn so thatP is manifestly real. In Fig. 1 the
functionG(z,u) ~the expression in parenthesis! is plotted for
t51.

VI. NUMERIC APPROXIMATION

Given the relative complexity of our final analytic resu
it is satisfying to note that it is easy to obtain a simple a
accurate approximate form which is suitable for numeri

FIG. 1. Plot ofG(z,u) for t51. Notice the characteristic log
normal tapering of the ridge as a function ofz, and the nearly
Gaussian distribution inu aroundu50.
4-4
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applications. Specifically, consider Eq.~28!. The complicated
coupling between the variablesu andz are a consequence o
the factor of 2z/(z11) appearing in the first term on th
right of this equation. This factor changes by only a factor
2 over the interval 1<z<`. A simple separable approxima
tion can thus be obtained by replacing this single factor b
constant,f. The most appropriate value of 1< f <2 evidently
depends ont. With this replacement, our final result can b
approximated as

P~Y,t!'
F~D !

2pD
G0~z,t! (

n52`

1`

exp@ inu2 f tn2/4#.

~47!

Here, theu-dependent term is known as Fourier’s ring. F
t51 and the choicef 51.23, this approximate form yields
root mean square error of 0.035. Comparison with the in
gral of the square ofP, this suggests an error of less tha
2%. A maximum error of 4% is encountered atz50 andu
50. Similar results are found for other values oft using an
appropiate value off. The error increases slowly with in
creasing values oft.

Additional approximations are possible and introdu
little additional error. For example, Fourier’s ring can
written in a form which converges rapidly for larget:

(
n52`

1`

exp@ inu2 f tn2/4#

5Ap

f t (
k52`

1`

exp@2~u22kp!2/4f t#. ~48!

We note also thatG0(z,t) can be approximated with surpris
ing accuracy asA exp@2mzg#, wherem and g are smooth
functions oft andA is a normalization constant.

VII. CONCLUSIONS

We have analytically derived the distribution of an infini
product of random 232 matrices. In statistical image analy
sis, it may be used as an uncommitted prior for morph
and warping@4#, with desirable properties not shared by t
usual priors based on elastic membranes. The distributio
such matrices may be evaluated numerically at a mode
cost in computer time and converges reasonably fast bec
of the strong exponential damping. We have also outline
numeric approximation with sufficient precision for practic
applications.
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APPENDIX: JACOBI FUNCTIONS

The Jacobi functions are related to the hypergeome
functions

P2n/221/21 i t
(0,n) ~z!5 2F1S n11

2
2 i t ,

n11

2
1 i t ;1;

12z

2 D
~A1!

with t real, and obey the orthogonality relation

E
1

`S 11z

2 D n

dzP2n/221/21 i t
(0,n) ~z!P2n/221/21 i t 8

(0,n)
~z!5

d~ t2t8!

mn~ t !
.

~A2!

In order to findmn(t) for arbitraryn, it is helpful to consider
the asymptotic form of these functions by using the stand
relation for hypergeometric functions

F~a,b;c;z!5~12z!2a
G~c!G~b2a!

G~b!G~c2a!

3FS a,c2b;a2b11;
1

12zD
1~12z!2b

G~c!G~a2b!

G~a!G~c2b!

3FS b,c2a;b2a11;
1

12zD . ~A3!

This form allows us to see that

P2n/221/21 i t 8
(0,n)

~z!→2uA~ t !uz2n/221/2cos~f t1t lnz!
~A4!

asz→`. Here,

A~ t !5
G~2i t !2n/211/22 i t

G~n/211/21 i t !G~2n/211/21 i t !
~A5!

andf t is the phase ofA(t). Using this asymptotic form, we
can perform the integral in Eq.~A2! by using the variable
u5 logz, adding a convergence factor of exp(2mu), and fi-
nally taking the limitm→0. The result is simply

uA~ t !u2F 2m

m21~ t2t8!2G22n. ~A6!

The factor in brackets is a familiar representation of 2pd(t
2t8) in the limit m→0. Standard relations for the gamm
function immediately yield Eq.~36!. This confirms the re-
sults of Mehler@3# for the special casen50. The extension
to n.0 would appear to be new.
ect.
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