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Abstract

A better understanding of pruning methods based on a ranking of weights according

to their saliency in a trained network requires further information on the statistical

properties of such saliencies� We focus on two�layer networks with either a linear

or nonlinear output unit� and obtain analytic expressions for the distribution of

saliencies and their logarithms� Our results reveal unexpected universal properties

of the log�saliency distribution and suggest a novel algorithm for saliency�based

weight ranking that avoids the numerical cost of second derivative evaluations�

� Introduction

The problem of supervised learning in layered neural networks is a two stage process� A choice
of architecture leads to the implicit de�nition of an associated parameter space f�wg� which
represents the ensemble of weights whose values need to be determined in order to fully specify
the network� This parameter space is then searched so as to identify speci�c parameter values
�w�� The goal is to obtain a network with low generalization error EG� a quantity that measures
the di�erence between the input�output map implemented by the network and the target map�

The training of feed�forward networks is usually formulated as an optimization problem�
values for the parameters �w are chosen so as to minimize a learning error EL� de�ned as a sum
over a set of training examples given in the form of input�output pairs� The extent to which
low learning error results in low generalization error is controlled by the prior choice of network
architecture� the possibility of using the information provided by the data to guide this choice
has been explored in a variety of learning algorithms��

Here we focus on the family of pruning algorithms� based on the elimination of redundant
weights and�or neurons during the training process� A variety of such methods has been in�
troduced in recent years� some based on the removal of neurons����� and some on the removal
of individual weights���������	 The goal is in either case to control the size of the network so as
to obtain the smallest possible network compatible with learning the training set� Capacity
arguments�
 indicate that improved generalization should result from this reduction in network
size� for numerical experiments that con�rm this prediction see for example��� Trained networks
of minimal size that implement a target map are also of interest as a potential tool for com�
paring the intrinsic complexity of di�erent tasks� and often provide an interpretable rendition
of the computational strategy through which the map is implementable in a neural network
representation���
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We consider a weight pruning scheme summarized as follows� the network is trained to a
minimum of the learning error� the weight that would cause the smallest increase in learning
error if removed is identi�ed and removed� and the resulting smaller network is retrained to
reach a new minimum of the learning error�������	 We follow the approach of Le Cun et al� ��
who propose a second order estimate of the saliency of each individual weight� de�ned as the
increase in learning error that would result from its removal� Our goal is to characterize the
expected distribution of saliencies over the weights of a two�layer network� an architecture that
has been shown to provide a universal approximator for the implementation of functions from
an N �dimensional input space onto a scalar output������

General assumptions about the statistical properties of the input data and the weights of the
trained network allow us to calculate the distribution of the logarithm of the saliencies� to �nd
an unexpected result� that the distribution is universal except for a translation that contains
all dependence on the training data� We present the analytic derivation of this result for two
fundamental types of two�layer networks��� one with a linear output unit and trained through
a quadratic error function� and another one with a sigmoidal output unit and trained through a
logarithmic error function of the Kullback�Leibler type� Results for a single�layer linear network
are included for comparison� Numerical simulations are used to illustrate the validity of our
assumptions about the statistical distribution of the weights in a trained network� and to verify
our predictions about the universal form of the saliency distribution�

An intriguing consequence of our calculations is a novel pruning algorithm that partially
justi�es and easily extends the simplest form of pruning in which the saliency of a weight is
assumed to be determined only by its magnitude�

� The saliencies

The saliency of a weight in a layered neural network is de�ned as the increase in learning error
that would result from its removal� Le Cun et al� � have proposed a second order method to
estimate this increase for networks that have been trained to a minimum of the learning error�

The �rst derivative of the learning error EL is zero at the minimum� the dominant contri�
bution to the saliency thus comes from the second derivatives� Higher order contributions are
neglected� and the assumption that only one weight is removed at a time is used to neglect the
o��diagonal terms in the matrix of second derivatives� to obtain
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for the increase in learning error associated with the removal of the kth weight� The saliency

sk of the kth weight is de�ned as this increase� sk � �Ek
L� and it is in this approximation fully

determined by the magnitude of the weight wk and the corresponding diagonal element of the
Hessian matrix of second derivatives of the learning error evaluated at the minimum� �w  �w��

We are interested in layered networks that implement maps from an N �dimensional input
onto a scalar output� we thus restrict ourselves to two�layer networks with a single hidden
layer of sigmoidal units connected to one output unit� which have been shown to be universal
approximators for the implementation of such functions������ We derive results for a linear output
unit and present their extension to the case of a nonlinear output unit� Results for a single�layer
linear network are included for comparison�

The output O� of a two�layer network with a linear output unit under presentation of input






�x� is given by�

O� 
KX
i��

Wi tanh

�
� NX
j�


wijx
�
j

�
A�W
 � �
�

where x�
  �	 for all �� wi
 is the threshold of the ith hidden unit� and W
 is the threshold of
the output unit� The quantity wij refers to the weight from the jth input unit to the ith hidden
unit and Wi refers to the weight from the ith hidden unit to the output unit� The number of
inputs is N and the number of hidden units is K� The equivalent expression for the case of a
nonlinear output unit is�
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We concentrate here on the saliencies for the input�to�hidden weights� the saliencies of the
hidden�to�output weights are easily found following a similar procedure��� For a linear output
unit we use a quadratic error function EL  �

�p
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��O��� to measure the distance between

target outputs y� and actual outputs O�� The corresponding saliencies take the form���
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where the notation h�i 
PN

j�
wijx
�
j is introduced to indicate the activation of the ith hidden

unit under presentation of the �th example� For a nonlinear output unit we use the Kullback�
Leibler entropy�� as the error function� for output units con�ned to the � �	� �	� interval through

a nonlinearity of the �tanh� type� the error is written as� EL  �
�p

Pp
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h
�	 � y�� log ��y�

��O� � �	� y�� log ��y�
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The corresponding saliencies take the form���
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where H� is the activation of the output unit under the presentation of the �th example� a
quantity equal to the output O� of the network with a linear output unit� Equation �
��

It is the logarithm of these saliencies that we now evaluate�

� The distribution of saliencies and their logarithms

Our analysis of the statistical properties of the saliencies of a trained layered network is based
on simple assumptions about the statistical properties of the corresponding weights�

A simultaneous sign change of all weights in either network �
� or network ��� leaves the
output invariant� this symmetry leads to the assumption that the probability distribution for
individual weights is symmetric around zero and has zero mean� We choose a Gaussian approx�
imation to the distribution of weights in the trained network� This further assumption is well
supported by numerical evidence obtained through the training of layered networks architec�
turally too large for the implementation of the target map� Consider the shape of the surface
EL��w� near the minimum at �w  �w� for such a network� the surface remains essentially �at in
a signi�cant interval around �w� along those directions corresponding to redundant parameters�
Gradient�descent weight updates in the vicinity of the minimum thus result in stochastic vari�
ations� which are almost uncorrelated from one time step to the next and add up to weights
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that are normally distributed� Numerical experiments support this picture and indicate that
the Gaussian character of the weight distribution increases with increasing learning time in the
vicinity of the minimum�

If the weight distribution has �nite covariance matrix� and the individual components x�j
of the p input patterns are independently drawn from a distribution P �x�� the central limit

theorem can be invoked to argue that the activation h�i of the ith hidden unit under presentation
of the �th pattern is a normally distributed random variable with zero mean and variance
��h  �N � 	���w�

�
x� where �

�
w is the variance of the input�to�hidden weights and ��x stands for

�N � 	���
PN

j�
�x
�
j �

�� independent of �� Correlations � h�i x
�
j 	 vanish for weights wij that are

stochastic variables with zero mean�
We now concentrate on the case of a two�layer network with a linear output unit and com�

pute the saliencies in Equation ��� and the distribution of their logarithms� We have applied
similar arguments to analyze the case of a two�layer network with a nonlinear output unit� the
corresponding results are summarized as we go along�

In the case of a linear output unit� consider the quantity
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The statistical properties of this stochastic variable are independent of i and j� the �uctuations
of this single stochastic variable assign di�erent values of Q to di�erent input�to�hidden weights�
It is useful to write Q  �	
p�

Pp
��� v

�� and note that di�erent terms v� are uncorrelated� as
the statistical independence of the input patterns guarantees that both the x�s and the h�s are
uncorrelated from example to example� It then follows that hQi  hvi and ��Q  �	
p���v � The
relative variance

�Q
hQi �

	p
p
� � as p�� � ���

As the number p of examples grows the �uctuations of Q around its mean hQi become negligible�
in this limit the stochastic variable Q becomes self�averaging and it can be replaced by hQi� The
saliencies in Equation ��� can then be written as

sij  w�
ijW

�
i hQi � ���

The same argument applies to the case of a nonlinear output unit� it su�ces to rede�ne
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to show that the saliencies in Equation ��� can also be written in the form of Equation ����
The Equation ��� thus provides a compact expression for the input�to�hidden saliencies sij

for two�layer networks with either a linear or nonlinear output unit� Since the value of hQi is
independent of i and j� all the information needed to rank these weights by order of increasing
saliency is contained in the product of the magnitude of two weights� wij and Wi� This result
reveals a simple way of implementing OBD in a two�layer network� it improves upon simple
pruning schemes based on ranking weights according to only their own magnitude while it
avoids the numerical cost associated with the computation of second derivatives�

Hidden�to�output saliencies si� labeled only by the index i of the corresponding weight Wi�
are easily shown to be�� proportional to W �

i � with a self�averaging proportionality factor that
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is independent of i� Pruning according to a saliency�based ranking thus reduces for the hidden�
to�output weights of a two�layer network to a simple magnitude�based pruning scheme�

The evaluation of the saliencies in Equation ��� requires the computation of the parameter
hQi  R�

�� dQ Q P �Q�� which contains explicit information about the data� In the case of a
linear output unit� the pertinent distribution is
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The corresponding value of hQi can be easily calculated in the regimes ��h � 	 and ��h 	 	 �see
Appendix A�� to obtain �
��x�
��

p

��h� and ��x

� respectively�

A similar analysis yields an expression for hQi in the case of a nonlinear output unit �see
Appendix A�� it depends not only on the variance �h for the activation of the hidden units
but also on the variance �H for the activation of the output unit� Asymptotic results are
�
��x�
����h�H� in the large variance limit and ��x

 in the small variance limit�

We now turn to calculating the distribution for the logarithm of the saliencies� the reason
for focusing on the logarithm of the saliencies rather than the saliencies themselves will become
clear in the process� Consider the logarithm of the saliencies in Equation ���

z  log s  logw�W � hQi � �	
�

where indices ij identifying a speci�c input�to�hidden weight are omitted for simplicity� We are
interested in the distribution
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The resulting Gaussian integrals can be performed �see Appendix B� to obtain���
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where K
 is the modi�ed Bessel function of the second kind of order zero and
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This result follows from Equation ��� and is thus valid for a two�layer network with either a
linear or nonlinear output unit� the character of the output unit simply selects the appropriate
form for hQi� as discussed in appendix A�

Note that a change in hQi only contributes in a translation along the z�axis� the distribution
for the logarithm of the saliencies has a shape which is universal in that it is independent of the
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Figure �� Distribution of the logarithm of the
saliencies z for the input�to�hidden weights of a
two�layer network with a linear output unit
 P �z�
is shown for �h � �� with �w  �W  ��� and
�x  �� as is the case for �� binary input compo�
nents


data and thus of the task that the network is being trained for� The shape of the distribution
is shown in Figure 	�

The distribution of saliencies can be found through a similar procedure� to obtain���

P �s�  ���s�K
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with ���s�  �
���w�
�
W

phQi s��� and ���s�  ��W
�w�
p
s
 hQi� Note that a change in hQi

results in a change of the actual shape of the saliency distribution�
For comparison we quote here the corresponding results for a single�layer linear network with

no hidden units� A similar but simpler calculation�� leads to results for the distribution of the
saliencies s and their logarithms z�
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p
�s��� and ���s�  �	
�w�

p
s

� For this simple architecture it is necessary

to consider the possibility hwi 
 �� the corresponding calculations can be carried through��� and
the results reveal a scaling of both height and width of the distribution P �s� with hwi�

� Numerical results

We now present numerical experiments on two�layer networks that justify our assumption of
zero�mean normally distributed trained weights��� The saliencies s associated with the various
weights are computed for the trained network following the original prescription by Le Cun et

al� as summarized in Equation �	�� The corresponding distribution for the logarithms z  log s
of the saliencies is found to be in good agreement with our theoretical predictions�

Numerical experiments reported here are for the contiguity problem����	� in which strings of
N binary components �	 are classi�ed into categories according to the number of contiguous
clumps of �	�s present in the pattern� The problem is simpli�ed into a dichotomy by focusing
on patterns that contain either only two such clumps �to be mapped onto an output of �	� or
three such clumps �to be mapped onto an output of �	�� Here we consider N  	�� out of
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Figure �� The weight distribution P �w� and log�saliency distribution P �z� for the input�to�hidden weights of a
two�layer neural network with N  �� input units and K  �� hidden units trained on the contiguity problem

Histograms based on data for all ��� input�to�hidden weights are shown �� iterations after reaching the minimum
of the learning error ��gures a and b�� ���� iterations after reaching the minimum ��gures c and d�� and �����
iterations after reaching the minimum ��gures e and f�
 The variance ��

w of the trained weight distribution is
indicated in each case
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a total of 	�
� possible patterns we only consider ��
� of which ��� belong to the two�clump
category and ��
 to the three�clump category�

We randomly select a training set of size p  �� and use it to train a two�layer nonlinear
network as described by Equation ���� with K  �� hidden units and ��	 parameters to be
determined by training� Learning proceeds by gradient�descent on an error function of the
Kullback�Leibler type� Target values are chosen at ���� instead of �	 to avoid saturation
e�ects that conspire against the validity of the second order approximation of Equation �	��

Numerical results are shown in Figure 
 for a training session in which weights were initially
drawn from a uniform distribution in the interval ��	
pN� 	


p
N �� with hwi  � and ��w  ������

The weight distribution P �w� and log�saliency distribution P �z� were measured upon reaching
the minimum of the learning error ��gures a and b�� after ���� additional iterations of the
gradient�descent algorithm ��gures c and d�� and again after 
���� additional iterations ��gures
e and f�� No weights were pruned� the histograms shown in Figure 
 gather the information
contained in all ��� input�to�hidden weights�

Similar results are obtained if the initial weights are drawn from a zero�mean Gaussian
as opposed to a uniform distribution��� Numerical results shown in Figure � reveal a linear
correlation between the initial and �nal values of ��w�

�a�

��

�nal

��
init

�b�

��

�nal

��
init

Figure �� The variance of the �nal weight distribution as a function of the variance of the initial weight distri�
bution in two regimes� �a� ��

init � ��� ���� and �b� ��

init � ��� ��
 Data for the trained network has been taken ����
iterations after reaching the minimum of the learning error


� Summary

Simple assumptions about the statistical properties of weights in a trained two�layer network are
supported by numerical evidence and used here to predict the expected distribution of saliencies�
Ranking of weights according to their post�training saliency is a crucial ingredient of pruning
algorithms such as Optimal Brain Damage� for the case of a two�layer network our results provide
a simple algorithm for implementing this prescription without the computational cost associated
with second�derivative evaluations� An unexpected outcome of our calculations is the �nding
of a universal shape for the distribution of the logarithms of the saliencies� The discovery of
a task�independent pro�le for P �z� leaves open the question of how to utilize the information
contained in the data to formulate a stopping criterion for the pruning process�
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A The mean hQi

We now calculate hQi  R�
�� dQ Q P �Q�� as needed to evaluate the saliencies in Equation ����

In the case of a linear output unit�
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In the case of a nonlinear output unit�

hQi 

�Z
��

dQ Q

�Z
��

pY
���

dH�dh�dx�P �H��P �h��P �x��

�

�
�Q� 	


p

pX
���

h
	� tanh��H��

i h
	� tanh��h��

i�
�x���

�
A

�
��

leads to

hQi  	



��x

�Z
��

dH�dh�P �H��P �h��
h
	� tanh��H��

i h
	� tanh��h��

i�
� �
��

where both P �H� and P �h� are normal distributions with zero mean and variances ��H and ��h�
respectively�

As before� these integrals are easily evaluated in two limits� For ��H � 	 and ��h � 	 we
obtain
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while for ��H 	 	 and ��h 	 	 the result is again
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B The distribution P �z�

We now calculate the distribution P �z� for the logarithm z  log s of the saliencies�
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The integral is rewritten in terms of u  log V �
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