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Abstract A Brownian motion model in the group of diffeo-
morphisms has been introduced as inducing a least commit-
ted prior on warps. This prior is source-destination symmet-
ric, fulfills a natural semi-group property for warps, and with
probability 1 creates invertible warps. Using this as a least
committed prior, we formulate a Partial Differential Equa-
tion for obtaining the maximally likely warp given matching
constraints derived from the images. We solve for the free
boundary conditions, and the bias toward smaller areas in
the finite domain setting. Furthermore, we demonstrate the
technique on 2D images, and show that the obtained warps
are also in practice source-destination symmetric and in an
example on X-ray spine registration provides extrapolations
from landmark point superior to those of spline solutions.
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1 Introduction

In any non-rigid registration algorithm, one must weigh the
data confidence against the complexity of the warp field
mapping the source image geometrically into the destina-
tion image. This is typically done through spring terms in
elastic registration [3, 9, 10], through the viscosity term in
fluid registration [8], by controlling the number of spline pa-
rameters in spline-based non-rigid registration [1, 23] or by
finding the “smallest” warp as a geodesic flow according to
a specific norm on warps [4, 17].

The regularizer ensuring a simple (or “small” to use the
terminology of Joshi et al. [15]) has profound influence on
which solution is obtained, and the properties of the solu-
tion. When the data support is weak or the warp is large,
the influence of the regularizer increases. Furthermore, if
the regularizer in turn defines distances between admissible
warps, it may be used as the foundation of making statistics
of warps.

The diffeomorphic approaches [4, 9, 15, 17] have nicer
theoretical properties in terms of having well defined in-
verse, allowing for composition, etc. However, all these ap-
proaches define the size of a warp as a length of path through
the space of the admissible warps from the identity warp to
the fiducial warp (or set of warps exhibiting fiducial prop-
erties, eg. specific point matches) and subsequently find
the shortest path. Hence, it compares to integrating some
“work” along a specific path of warps.

We wish to define a regularizer in a Bayesian setting as a
prior on warps. This should be a prior on the group of dif-
feomorphisms and be “natural” in the sense that it behaves
well under the group action of composition of warps. The
simplest approach is then to define it as a Brownian walk
in the group of diffeomorphisms. This paper constitutes the
first coherent collection of material from a number of con-
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ference papers on the topic [14, 18–20], clarifies a number
misconceptions in earlier manuscripts and give new theoret-
ical properties on invariance and details for implementation.

Before going into the specifics of Brownian warps, their
properties and implementations, we make the following ob-
servations.

2 Definitions

From a mathematical point of view we wish the warp W to
fulfill the following principles

Smoothness W is continuous and sufficiently differentiable.
If this is not the case, the warp would be able to “tear holes”
in the image.

Invertible For all admissible W , the inverse W−1 exists. If
the inverse did not exist, the warp would be able to fold.

Inverse smoothness The inverse is also smooth. If we are to
work with the inverse of a warp, then obviously it should
have the same properties as the warp itself.

Path-connected All warps are path-connected to the iden-
tity within the space of all admissible warps. Otherwise an
underlying continuous process would not exist. In practice,
reflections are neglected by this principle.

This in short means that the warp is a diffeomorphism of
positive Jacobi determinant, we denote this positive diffeo-
morphisms.

We also wish to define a regularizer that allows us to com-
pute warps. Intuitively this regularizer should act similar to
a norm on warps, but we relax a bit on the formal require-
ments and formulate the following criteria for the regularizer
R(W) to fulfill:

Positive definite R(W) ≥ 0 and R(W) = arg minW R(W)

⇒ W = I . If R(W) was a proper norm we would need
R(I) = 0 to be the minimum, but to avoid normalization
issues, we simply define R(I) to be the minimum of R.

Triangle inequality R(W1) + R(W2) ≥ R(W2 ◦ W1), where
◦ denotes warp composition. If R is to behave similar to a
norm, this criteria is obvious.

Source-destination symmetry R(W) = R(W−1). Again, if
R is to behave similar to a norm, it is obvious that the warp
that moves a point from A to B should have the same com-
plexity as the warp that moves a point from B to A.

Smoothness The regularizer is continuous in W and its vari-
ations are well defined. Otherwise optimization would not
necessarily be tractable, and gradient-based methods ill-
defined.

These properties are fulfilled by the previously mentioned
diffeomorphic approaches [4, 9, 15, 17], but not by ap-
proaches that are linear in warp coordinates like linear
spline-based methods [5, 7, 23].

We are now ready to define a warp: A non-rigid reg-
istration may be modeled by a warp field W : R

D �→ R
D

mapping points in one D-dimensional image into another
D-dimensional image. We give the definition:

Definition 1 (Warp Field) A warp field W(x) : R
D �→ R

D

maps all points in the source image IS(x) : R
D �→ R into

points of the destination image ID(x) : R
D �→ R such that

IS(W(X)) is the registered source image. W is invertible
and differentiable (i.e., a diffeomorphism) and has every-
where a positive Jacobian det(∂xj

W) > 0.

The identification of a warp field on the basis of images
is a matter of inference. Below we will apply the Bayes in-
ference machine [6], but a similar formulation should ap-
pear when using information theoretic approaches such as
the minimum description length principle [21].

We wish to determine the warp field W that maximizes
the posterior

p(W |IS, ID) = 1

Z
p(IS, ID|W)p(W),

where Z is a normalizing constant (sometimes denoted the
partition function), p(IS, ID|W) is the likelihood term, and
p(W) is the warp prior. The likelihood term is based on the
similarity of the warped source and destination image and
may, in this formulation, be based on landmark matches [7],
feature matches [16, 22], object matches [2], image corre-
lation [16], or mutual information [24]. The major topic of
this paper is the prior p(W) that expresses our belief in the
regularity of the warp field prior to identifying the images.

3 Brownian Warps

We seek that distribution of warps which is the analogue of
Brownian motion. We wish this distribution to be indepen-
dent of warps performed earlier (i.e., invariant with respect
to warps). This property is of fundamental importance par-
ticularly when determining the statistics of empirical warps,
creating mean warps etc. We also want the distribution to be
a simple function of the regularizer, and choose the maxi-
mum entropy solution, which is normally denoted the Gibbs
distribution

p(W) = 1

Z
exp [−R(W)] .

The assumption of independence of previously performed
warps then gives

p(W = W2 ◦ W1) =
∫

p(W2 = W ◦ W−1
1 )p(W1)dW1.

This corresponds to the semi-group property of Brownian
motion: The distribution of positions after two moves corre-
sponds to two independent moves and, through the central
limit theorem, leads to a Gaussian distribution of positions.
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Since this also holds for a concatenation of many warps, we
can construct a warp as

WB = lim
N→∞

N∏
i=0

◦Wi,

where the Wi are independent infinitesimal warps. This cor-
responds exactly to the definition of a Brownian motion on
the real axis if the concatenation product is replaced by an
ordinary sum.

In order to find this limiting distribution when all Wi are
independent, we investigate motion in the neighborhood of
a single point following along all the warps and make the
following lemma:

Lemma 1 (Local structure) Let JWi
= ∂xj

Wi be the local
Jacobian of Wi . Then, the Jacobian of a Brownian warp is

JWB
= lim

N→∞

N∏
i=0

JWi
.

Proof This is obviously true due to the chain rule of differ-
entiation. �

Assume that an infinitesimal warp acts as the infinites-
imal independent warp round all points. We assume inde-
pendence along the warp to constitute a Brownian motion.
Furthermore, we assume spatial independence among points
in their first order structure. This is the simplest possible
assumption. Notice however that this does not imply that
points move independently. It acts as a first order regular-
ization on the warp including the spatial diffusion under
gradient descend implied by the second order terms in the
warp originating from the variation with respect to first order
terms. Hence, this independence still assume spatial correla-
tion in warp. Higher order correlation should be constructed
in a warp invariant fashion which is far from trivial and left
to later research.

In the case of spatial independence and independence of
the infinitesimal warps along the warp, all entries in the local
Jacobian are independent and identically distributed round
the identity. Hence, we may now model

JWB
= lim

N→∞

N∏
i=0

I + σ
1√
N

Hi, (1)

where Hi is a D × D matrix of independent identically dis-
tributed entries of unit spread. The denominator

√
N is in-

troduced to make the concatenation product finite, and σ is
the spread or the “size” of the infinitesimal warps. The de-
tails does not matter as they disappear in the limit, but one
may think of σ as the standard deviation of the local motion.

To summarize, the limiting distribution of (1) is the dis-
tribution of the Jacobian of a Brownian Warp. In turn, this
defines the Brownian distribution on warps, as we have no
reason to assume other structure in the distribution.

Unfortunately, the solution to (1) is not given in the lit-
erature on random matrices. Gill and Johansen [12] solve
the problem for matrices with positive entries and Högnäs
and Mukherjea [13] solve, among other cases, the situation
when the matrices are symmetric. However, Jackson et al.
have solved the case for only two dimensions [14] and we
are presently considering the solution for three. Here, we
present only the result.

Theorem 1 (2D Brownian Jacobian) The limiting distribu-
tion of (1) where Hi have independent entries of unit spread
and W : R

2 �→ R
2, is given as

p(JWB
) = G(S/σ)

∞∑
n=0

gn(F/σ) cos(nθ), (2)

where G is the unit spread Gaussian, gn are related to the
Jacobi functions, and the parameters are given as follows:

Scaling S = log(det(JWB
))

Skewness F = 1

2 det(JWB
)
‖JWB

‖2
2

Rotation θ = arctan

(
j12 − j21

j11 + j22

)
,

where jij are the individual entries of JWB
.

It is shown in [14] that the limiting distribution does not
depend on features of the infinitesimal distribution other
than its spread, σ . The parameter σ may be viewed as a
measure of rigidity. The effects of the parameters are shown
in Fig. 1.

It has been proved, that this distribution creates invertible
warps (with probability 1), is invariant under inversion of
the warp, and is Euclidean invariant [19]. Here we prove that
the distribution is invariant under simultaneous and identical
warping of source and destination.

Theorem 2 (Local diffeomorphic invariance) The distribu-
tion of warps given as spatially independent Jacobians each

Fig. 1 The independent action of the parameters on a unit square
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distributed according to (2) is invariant with respect to a
diffeomorphism simultaneously acting on source and desti-
nation.

Proof A source and destination are related by a local Jaco-
bian J such that n2 = Jn1, where n1, n2 are local frames
in the source and destination image respectively. An arbi-
trary diffeomorphism acts locally on the frames with its
Jacobian h. Acting on source and target simultaneously
makes n2h = J ′n1h. As all h,n1, n2 are invertible, obvi-
ously J = J ′. �

This theorem only hold as a local property, but is in gen-
eral valid for a whole warp if an invariant measure is used
for integration over the full warp field. Construction of such
a measure is, however, not trivial in the general case. We will
do so for the pairwise image matching problem below.

For computational purposes it may be convenient to ap-
proximate the above distribution by a distribution which is
also independent in F and θ . This can be done in many
ways without loosing the symmetry and diffeomorphic in-
variance. However, the convolution property of concatena-
tion of warps will no longer hold exactly. We suggest the
following approximation.

p(JWB
) ≈ Gσ (S)G

σ/
√

2(θ)e−(F/σ), (3)

where Gσ is a Gaussian of spread σ . This approximation
has a relative error at less than 3% for all reasonable values
of S, θ,F when σ > 0.4.

Taken from local points to a global distribution of a full
warp, we may assume spatial independence of the local Ja-
cobian of the warp. This does not correspond to assuming
local independent motion of points, but that the local spatial
differences in motion are distributed independently, just like
independent increments (gradient) of neighboring points of
a function in turn leads to Tikhonov regularization for func-
tions. Taking this Markov Random Field approach, we may
say that we formulate a first order MRF on the point mo-
tion function. The above distribution may then be viewed as
Gibbs distributions, and the energy or minus-log-likelihood
of a full field then reads

E′
s(W) = − logp(W) + c =

∫
�

S2 + 2θ2 + 2σFdx,

where c is an arbitrary irrelevant constant. However, the in-
tegration variable is not invariant under the warp, and the
functional will not lead to warp invariance. This may be ob-
tained by using a warp invariant integration measure dx̃:

Es(W) = − logp(W) + c =
∫

�

S2 + 2θ2 + 2σFdx̃, (4)

where x̃ = x
√

det(J ) are integration variables invariant un-
der the warp chosen to ensure global as well as local warp

invariance. It may at first glace seem ad hoc to introduce this
invariant measure. However it also follow directly from the
probabilistic theory if one takes into account that after some
(of the infinitely many) warps, it is more probable to see the
areas that have increased in size. This is handled elegantly in
the theory by Markussen as an effect of transforming the Itô
integral of the spatio-temporal warp [17] into a Stratonovich
formulation.

4 A PDE Solution

In general the warp energy (4) is augmented by an image or
landmark matching term, so that the full functional to mini-
mize for a given warp inference task reads

E(W) = Es(W) + λEI (W),

where EI is an image matching functional such as cross-
correlation, mutual information, or landmark distance. Un-
fortunately the energy functional (4) is non-linear in the
coordinate functions, and simple tricks such as eigenfunc-
tion expansions and derived linear splines are not possible.
Therefore we will optimize this functional using a PDE as
gradient descend. We only concentrate on Es as EI is thor-
oughly treated elsewhere [11].

We treat the energy minimization problem using a gradi-
ent descend scheme:

∂tW = − δE

δW
= −δEs

δW
− λ

δEI

δW
.

We introduce the notation Q(D,θ,‖J‖2
2) = S2 +2θ2 +2σF

such that

Es ≡
∫

�

Q(D,θ,‖J‖2
2)dx̃

and notice that Q does only depend on W in first order so
that

δEs

δW
= −

(
∂x

∂y

)T
∂Q

∂J
,

where ∂
∂J

denotes symbolic differentiation with respect to J ,
and ∂x denotes spatial partial differentiation with respect
to x (and similar for y). Since J is a 2 × 2 matrix vary-
ing in x, ∂Q

∂J
becomes a 2 × 2 matrix of functions in x. That

is,

∂Q

∂J
: x ∈ R

2 �→ R
2×2

and thereby δEs

δW
: R

2 �→ R
2.

Here we first concentrate on E′
s (not using the invariant

integration variable x̃ but plainly dx):
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∂Q′

∂J
= 2 logD − 2σF

D

∂D

∂J
+ σ

D

∂‖J‖2
2

∂J
+ 4θ

∂θ

∂J
,

where J is the Jacobian matrix of W and D = det(J ). Using
the invariant coordinates (substituting dx �→ √

Ddx) this
yields

∂Q

∂J
= Q/2 + 2 logD − 2σF√

D

∂D

∂J
+ σ√

D

∂‖J‖2
2

∂J

+ 4
√

Dθ
∂θ

∂J
.

On an infinite domain the symbolic differentiation in these
equations are very simple as all terms are co-linear or
quadratic in the entries of J . Numerical issues do however
arise on a finite domain since ∂D

∂J
is non-zero only at the

boundary.
Using E′

s directly serves the problem that the solution is
no longer source-target symmetric as emphasis in the energy
varies from point to point with respect to the local scaling.
Using Es in its full form using the invariant integration vari-
able solves this problem.

On a bounded domain, this will lead to a simultane-
ous minimization on the size of the domain, to minimize
the functional, and hence a bias toward shrinking warps. It
will no longer give meaningful warps directly. This may be
solved by fixing the size of the invariant domain directly us-
ing a Lagrange multiplier in the optimization problem:

Es-bounded =
∫

�

Q(D,θ,‖J‖2
2)dx̃ + λ

∫
�

dx̃. (5)

We directly solve for λ using the fact that the time evolution
of

∫
�

dx̃ vanishes if

λ = − E′
s∫

�
dx̃

.

By simple calculus of variation we obtain:

∂

∂J
Qs-bounded = λ

√
D + Q/2 + 2 logD − 2σF√

D

∂D

∂J

+ σ√
D

∂‖J‖2
2

∂J
+ 4

√
Dθ

∂θ

∂J
, (6)

where λ must be updated along the evolution. As λ is an
integral measure, this actually is not a PDE but a partial
integral-differential equation. So far, we have no proofs of
stability of uniqueness of the solution. However, it works
in the practical solution. It does not fall within the class
for which uniqueness has been proved [11]. It also works
on a totally different function space, since in previous work
[11] the warps have been living in component-wise Sobolev
spaces which has a non-empty intersection with the space of
diffeomorphisms. However some diffeomorphisms are not

in the Sobolev space, and some members of the component-
wise Sobolev space does fold and are obviously not diffeo-
morphisms.

This algorithm guarantees that the resulting warp is a dif-
feomorphism. It corresponds to some degree to the large de-
formation diffeomorphisms by Joshi and Miller [15] in the
sense that their formulation also seek a solution composed
over many time steps. However, we have succeeded in inte-
grating out the time, and found the closed form solution for
the resulting functional. Hence, we find the solution directly
by optimizing the warp, and not by optimizing the warp, and
all the intermediate steps, from source to destination. An
interesting theoretical link between the two approaches is
found in Markussen [17], where a warp-time discretization
is performed, but where a Brownian motion formulation is
used.

5 Implementation

We now turn to discretization of the above partial differential
equation. First we discretize the energy in (5) as

Es-bounded ≈
∑

(x,y)∈�

√
D · Q(D,θ,‖J‖2

2) + λ
∑

(x,y)∈�

√
D,

where D, θ , and ‖J‖2
2 are all functions of the local Jacobian

in (x, y). We can then compute the derivative of the energy
with respect to the warp in the point (x0, y0) as

∂

∂W(x0, y0)
Es-bounded

≈
∑

(x,y)∈�

[
λ
√

D + Q/2 + 2 logD − 2σF√
D

∂D

∂W(x0, y0)

+ σ√
D

∂‖J‖2
2

∂W(x0, y0)
+ 4

√
Dθ

∂θ

∂W(x0, y0)

]
.

To compute this gradient we need to evaluate the derivative
of D, ‖J‖2

2, and θ with respect to W(x0, y0). To do this,
we first discretize the Jacobian. As a first approximation we
compute the elements of the Jacobian at each grid point as
backwards differences

J (x, y)

≈
(

u−
x (x, y); u−

y (x, y)

v−
x (x, y); v−

y (x, y)

)

=
(

u(x, y) − u(x − 1, y); u(x, y) − u(x, y − 1)

v(x, y) − v(x − 1, y); v(x, y) − v(x, y − 1)

)
,

where W = (u, v)T . Using this approximation we can now
compute the needed derivatives as

∂D

∂u
≈ v−

y − v−
x
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∂‖J‖2
2

∂u
≈ 2u−

x + 2u−
y

∂θ

∂u
≈ (u−

x + v−
y ) − (u−

y − v−
x )

(u−
x + v−

y )2 + (u−
y − v−

x )2
,

and similar for the derivatives with respect to v. These deriv-
atives are defined in terms of the discretization. To make the
discretization symmetric in x and y we choose to use all
four combinations of forward and backward differences in
both coordinates. The final approximation of the energy is
then computed as the average of these four approximations.
When using this approximation we see that each grid point
(x, y) that is not on the border appears 12 times in the en-
ergy. This is illustrated in Fig. 2. When computing the deriv-
ative of the energy we see that 12 frames will contribute to

∂D
∂u(x,y)

,
∂‖J‖2

2
∂u(x,y)

, and ∂θ
∂u(x,y)

(and similar for v(x, y)).
At the boundary, the contributions from the discrete Jaco-

bian leaving the domain are neglected, as the free boundary
conditions are implemented in this way.

For time discretization of the PDE we use a simple ex-
plicit scheme. That is, we repeat the following step until
convergence

Wt+1 = Wt − γ
δE

δW
.

In this paper we assume that exact landmark matches are
available. This basically means that the warp is known in

certain grid points. For this reason, the warp is only itera-
tively updated in grid points where the warp is unknown.

6 Results

We see from the energy formulation that the rigidity para-
meter σ determines the relative weight of the skewness term
to the scaling and rotation terms. For illustration of the inde-
pendent terms, see Fig. 3. For large deformations, the differ-
ence to spline-based methods, becomes obvious as for ex-
ample thin plate splines can introduce folds in the warping
(see Fig. 4).

Fig. 2 In every point (xi , yi), the local Jacobian is estimated from
the 12 local discrete frames including the point. To the left, the four
frames, where the point contributes centrally, are illustrated, whereas
the 8 frames where the point contributes to in extremal position are
illustrated to the right

Fig. 3 Illustration of deformation of a regular grid. Two points in the
center have been moved up and down respectively, while the corners
are kept fixed. We see that the scaling term (top left) aims at keeping
the area constant. The skewness term (bottom left) aims at keeping the

stretch equally large in all directions. Top right is a combination of
scaling and skewness (σ = 1). Bottom right is a thin plate spline for
comparison
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Fig. 4 Leftmost are two images of large deformations: Left is the max-
imum likelihood Brownian warp, right is a thin plate spline. Rightmost
two images are two consecutive warps where landmark motions are

inverse: Left is Brownian warps, right is thin plate spline. Brownian
warps do not give the exact inverse due to numerical imprecision, but
closer than the thin plate spline

Fig. 5 Top-left is the fraction of thin-plate warps that contains a fold
(is not invertible) as function of the spread of the random motion of the
two interior point. Top-right is the absolute error (as difference to the
identity warp) in pixel position when warping forward and concatenat-

ing with the backward warp. Below is the same for the relative error
of the Brownian warps and the thin-plate warps. 25 runs for each stan-
dard deviation on a 50 × 50 grid was performed. All error bounds are
bootstrapped 90% confidence intervals

For testing the source-target symmetry we conducted
the following experiment. We kept the boundary fixed and
moved two random points in the interior with a Brownian
motion to new random positions (see Fig. 5).

The figures clearly show that the warp generated by the
above algorithm is statistically significant more symmet-

ric than thin-plate spline warps. The motion of points af-
ter warping forward and back are less than a third than in
the case of thin plate splines. Hence, not only is the the-
ory symmetric, implementations show significant improve-
ments. However, the warps are not totally symmetric, which
in our opinion is due to the spatial discretization, as the er-
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Fig. 6 As previous figure, but with 200 runs for each standard deviation on a 10 × 10 grid

ror is smaller on a 50 × 50 grid than on a 10 × 10 grid (see
Fig. 6).

We evaluate the Brownian warps and thin-plate-spline
warps for doing extrapolation of registrations of biological
shapes. From a few point matches, we wish to generate a
registration of the full outline. This is of course not accurate
and we evaluate the quality of the registration based on the
distance of the curves.

10 fractured vertebrae (the individual bones in the spinal
column) have been annotated by 6 points used for frac-
ture scoring in traditional clinical practice (see Fig. 7).
These 6 points are used as landmarks for a thin-plate-spline
non-rigid registration and a Brownian warp registration of
the fractured vertebrae to a normal template vertebra (see
Fig. 8). All vertebrae have also been annotated by a full con-
tour. The registration can be used for transporting the full
contour to the frame of the normal template vertebra. The
hypothesis is now that since the diffeomorphic registration
is theoretically more appropriate, it may also generalise the
registration of the 6 points to the full contour better. Hence
we wish to measure the distance between the template con-

tour and the contour of the fractured vertebra after registra-
tion based on the 6 height points.

The result of the registration is that two curves C1,C2 in
the plane are given. Many different distances between these
may be measured. Assuming one curve is “correct” (the tem-
plate curve C1) we wish to estimate the distance from this
to an approximated curve C2 of the registered fractured ver-
tebra. Since no correspondence is given between points on
the curves, we measure, for each point on the correct curve,
the distance to the closest point on the approximate curve.
This is, in mathematical terms, the Hausdorff distance from
the template boundary C1 to the warped fractured vertebra
boundary C2:

dH (C1,C2) =
∫

c

min
s2

d(C1(s1),C2(s2))ds1

where C1, C2 are the two curves, s1, s2 are their respective
natural parameters, and d(·, ·) is the Euclidean distance be-
tween two points.

In order to not let the arbitrary endpoint of the curves
influence the measure, we have chosen to cut the template



J Math Imaging Vis (2008) 31: 221–231 229

Fig. 7 The template vertebra
and the 6 annotated points
normally used for fracture
scoring, but here as landmarks
for registration

Fig. 8 (Color online) An
example of a fractured vertebra
and its boundary in green. In
blue is the Brownianly warped
template boundary. In red is the
thin-plate spline warped
template boundary

in each end, so that it covers less of the vertebra than any of
the test vertebrae.

The results are as follows:

Warping method Average dH Standard dev.

Thin-plate-spline 4.83 mm 1.41 mm
Brownian warps 3.41 mm 1.27 mm

The average Brownian warp Hausdorff distance is signif-
icantly smaller than the thin-plate warped Hausdorff dis-
tances with a p < 0.05 using a two-sided unpaired het-
eroscedastic Student’s t-test.

The results here are that the theoretically well-founded
diffeomorphic Brownian warps actually also produce a sig-
nificantly better warp for the above practical purposes.

Matching fractured vertebrae using only 6 points is a dif-
ficult task, but the Brownian warps removed more than
30% of the warping error compared to the standard linear
approaches. The hope is that this will generalize to other
anatomical registration tasks. If this is indeed the case, dif-
feomorphic warping may lead to improved registration in
many other cases, and subsequently to better atlas-based
segmentations, more compact shape models, and more com-
pact appearance models.

7 Conclusion

We have exploited a prior for warps based on a simple in-
variance principle under warping. This distribution is the
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warp analogue of Brownian motion for additive actions.
An estimation based on this prior guarantees an invertible,
source–destination symmetric, and warp-invariant warp.
When computational time is of concern, approximations can
be made which violate the basic semi-group property while
maintaining the invariances. For fast implementations, we
recommend an approximation including only the skewness
term, as this has nice regularizing properties.

We have developed a PDE scheme for implementing
an algorithm computing the maximum-likelihood warp. We
have tested this in the case of exact landmark matching, and
shown that it does not fold (as theory predicts) as linear ap-
proaches will do, and shown that also in discrete approxima-
tion, the scheme yields solutions very close to being source-
target symmetric. The approach has shown promising results
for medical image registration.

Future work includes a joint optimization scheme with
other image matching terms as used earlier [11].
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