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Abstract: The leading contributions to the anomalous magnetic moment of the muon due to 
electron vacuum polarization corrections are governed by the short=distance behaviour of 
the photon propagator. It is found that the formulation of this relationship in terms of a 
Callan-Symanzik equation for the muon anomaly is extremely useful for an actual evalua- 
tion of the leading mass dependent terms (i.e., terms proportional to powers of log mu/me). 
This enables us to predict all the mass dependent terms from a large class of eighth-order 
Feynman diagrams, in addition to verifying previously calculated lower order contributions, 
without much ealeulational effort. We emphasize that "light-by-light" type contributions 
are not included in this calculation. We have also been able to evaluate the mass indepen- 
dent terms contributing to the muon anomaly from a more restricted class of Feynman dia- 
grams. 

1. Introduction 

It has already been known for some time that there is an intimate relationship 
between the renormalization group [1 -2 ]  and some of the mass dependent terms 

(i.e., terms proportional to powers of log m J m  e in the muon anomalous magnetic 
moment.  The first systematic investigation of this relationship was done by Kino- 
shita [3] in connection with the calculation of part of the sixth-order contribution 
to the muon anomaly. Because of the renormalization group structure the calcula- 
tion was reduced to simple algebra. 

One source of mass dependent terms in the muon anomaly are muon vertex 
graphs with electron loop insertions in the photon propagators. Various examples 
are shown in fig. 1. Because of the large mass ratio, m~/m e ~ 200, one expects 
that the asymptotic part of the electron loops will play a dominant role. In other 
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Fig. 1. Examples of graphs which give mass dependent terms to the muon anomaly. 

words, one expects that the leading contributions to the muon anomaly from elec- 
tron vacuum polarization corrections are governed by the short-distance behaviour of  
the photon propagator. 

Recent years have seen great progress in the understanding of  short-distance be- 
haviour in field theory. It has been shown independently by Callan [4] and Sy- 
manzik [5] that the Green functions of  any renormalizable field theory satisfy 
certain partial differential equations with respect to the masses and coupling con- 
stants. These so-called Callan-Symanzik equations are the local form of  the 
global transformation laws taking the theory from one subtraction point to another 
It is then perhaps not surprising, as will be shown below, that the part of  the muon 
anomaly which is due to electron vacuum polarization corrections only, by itself, 
satisfies a Callan-Symanzik type equation, and that this equation, in the asymp- 
totic regime Where m e / m  ~ ~ 0, embodies all the renormalization groiap relations. 

The last few years have also seen great progress in the calculations of  the elec- 
tron and muon anomalies, up to sixth-order *. This development has been moti- 
vated by a parallel improvement in the accuracy of  the experiments **. 

In the electron's case, the anomaly can be used to obtain an almost competitive 
value in accuracy for the fine structure constant. The forthcoming muon g - 2  ex- 
periment at CERN will not only test our knowledge of  quantum electrodynamics 
but also of  numerous other effects, in particular the hadronic corrections ***. It 

* For a review of the situation (by the end of 1971) see ref. [6]. 
** For a review of the experimental situation (by the beginning of 1972) see ref. [7]. 

* * *  For the most recent estimate of the hadronic corrections to gv-2, where earlier references 
can be found, see ref. [8]. 
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has been estimated [9] that the eighth-order contribution to the muon anomaly 
from mass dependent terms may be larger than the contribution due to weak inter- 
actionst and comparable to the future experimental precision. It would be nice, 
therefore, to have an exact calculation of  these eighth-order mass dependent terms. 

This paper is primarily devoted to a study of  the short-distance behaviour of  the 
photon propagator, in connection with the determination of  the radiative correc- 
tions to a static quantity like the muon g-factor. We shall then use the powerful 
techniques of  Callan-Symanzik equations for an explicit calculation of  a large class 
of  diagrams contributing to the muon anomaly in eighth-order. In contrast to the 
conventional renormalization group method [3], which treats classes of  diagrams 
separately, the Callan-Symanzik formulation allows for a global calculation of  mass 
dependent terms at a given order without having to consider the contributions from 
individual diagrams separately. We emphasize, however, that an important class of  
diagrams, i.e. those with light-by-light scattering insertions, cannot be estimated 
using this technique. 

The paper is organized in the following way. In sect. 2 we present a short review 
of  the theoretical and experimental situation concerning the anomalies, in order 
to spare the reader the trouble of  searching the literature. In sect. 3 we derive the 
Callan-Symanzik equation for the muon anomaly and use it to calculate the mass 
dependent terms in eighth-order. For a more restricted class of  diagrams we are 
even able to calculate the corresponding mass independent terms. This is done in 
sect. 4 for the electron vacuum polarization insertions into the lowest order muon 
vertex, and in sect. 5 for insertions into arbitrary muon vertices. In sect. 6 we 
summarize the results and present the conclusions. We have relegated to appendix 
A the more technical discussion of  the correction terms to the asymptotic formulae 
used in the text. In appendix B we carry out explicitly the evaluation of  the first 
three leading powers of  log rnJrn e to all orders of  perturbation theory. 

2. The lepton anomalies 

The latest result in the long series of  measurements of  the electron g-2 is the one 
by Wesley and Rich [12], with the value * 

a exp = 0.0011596567(35). (2.1) 
e 

For the muon anomaly the latest experimental value obtained by the CERN group 
[14] is 

a exp = 0.00116616(31). (2.2) /a 

~f Our understanding of the weak contributionslto g# - 2  has evolved considerably with the advent 
of the unified gauge theories of weak and electromagnetic interactions. For a review of the 
relevant calculations see refs. [ 10, 11 ]. 

* This is the number given by Granger and Ford ref. [13] which corrects the previous value Of 
Wesley and Rich ref. [12]. 
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The next CERN experiment is expected to improve this number by a factor of 20 
in the uncertainty. 

The theoretical value for the electron anomaly is of the form 

aQED=Ael ~+Ae2 (~) 2 

where the coefficients are * 

+A~ ( ~ ) 3 + A , ]  ( ~ ) 4 +  . . . .  (2.3) 

Ale = ~ , (2.4) 

A2e ___ 197144 +]-27r 2 _ 2-17r 2 log 2 + ,.3~'(3) = - 0 . 3 2 8 4 8 . . .  , (2.5) 

e A 3 1 . 2 9 ( 6 ) .  (2.6) 

The eighth-order coefficient A,] is totally unknown. It has contributions from 891 
d iagrams. . .  The leading mass dependent term has been shown [ 16] to give a cor, 
rection to the A~ coefficient which is 

( )2m__~ I(~-~--) 4 ] e ! me + O , (2.7) A 2 -~ A~ + 4-f 

and can therefore be disregarded at the present level of  needed accuracy. From the 
first three powers of a/rr in (2.3); and inserting the value [ 17] 

cC 1 = 137.03608 (26), (2.8) 

we find the theoretical prediction 

a th - 0.0011596529 (24) (2.9) 
e - -  

in reasonable agreement with the experimental value (2.1). 
For the muon, the situation is as follows. The purely quantum electrodynamics 

effect is of the form 

u 1~ - /  2 " ' ' '  (2.1o) 

* For fourth order see ref. [29]. There are many contributors to sixth order; in particular there 
are three different evaluations of the bulk of the diagrams [ 15]. As we are not concerned 
with evaluating a current "best value" we have arbitrarily chosen.the number quoted in ref. 
[ 15a], and warn the reader against misquotation of it. (See ref. [ 15-] (or [6]) for the early 
history). 
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where the coeffidients A~, i = 2, 3, 4 . . . .  depend now in a crucial way on the 
me/m u mass ratio. The corresponding numerical values are *" 

At = l,  (2.11) 

A~ = 0.76578, (2.12) 

A~ = 23.0 (2). (2.13) 

The large value ofA~! is essentially due to a new source of  mass dependent terms, the 
light by light scattering contribution [18] shown in fig. 2. An educated guess [9] 
of  the contribution to the eighth-order coefficient A S from all possible sources of  
mass dependent terms (469 diagrams) predicts 

A~ ~ 150 - 200. (2.14) 

Evaluating eq. (2.10) and adding the strong interaction contribution [8] 

a str°ng = 68 (9) × 10 -9 ,  (2.15) 

we find the theoretical prediction 

a th = 0.001165897 (10). (2.16) 
g 

We have here left out the estimated eighth-order contribution (~5 × 10 -9 )  and the 
weak contribution (~  2 × 10-9)  **. The theoretical and experimental values agree 
within one standard deviation. 

The next CERN experiment is expected to yield a precision better than 15 X 10 -9,  
in which case it begins to be of  interest to have a more precise evaluation of  the 

;k 
Fig. 2. Contribution to the muon anomaly from light by light scattering which gives the do- 
minant contribution to llae sixth-order coefficient A~. 

* For fourth order see reL [26-28]. In sixth order a number of authors have been involved 
(see ref. [6] for the history and references). The number we quote is obtained from eq. (2.6) 
using the improved light-by-light value [ 19] and adding the result of ref. [ 15a] (see the pre- 
vious footnote). 

** See footnotet page 3. 
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eighth-order contribution arising from the dominant mass dependent terms. The 
following sections are a step towards that goal. 

3. The Callan-Symanzik equation for the muon anomaly 

As mentioned in the introduction we shall limit ourselves to the type of Feyn- 
man diagrams shown in fig. 3, i.e. electron vacuum polarization insertions into a 

muon vertex. Specific examples are exhibited in fig. 1. These contributions are 
generated by replacing all internal photon lines in a renormalized muon vertex by 
dressed renormalized photon propagators of the form 

• g u .  • gu~ 
--t q2-- ~ --I --q2 dR (q2/m2' or) + quqv t e rms .  (3.1) 

The muon vertex may consist of a single graph, a subset of graphs or all graphs in a 

given order. It is understood however, that we are only considering sets of muon 
vertices that are gauge invariant under internal gauge transformations*. The func- 
tion dR(q2/m2, ~) represents all electron loop corrections to the photon propagator. 
The muon vertex thus obtained, and hence the anomaly, a, becomes a functional 
o f d  R of the form ** 

e e 

+ ' ~ ~ , ~  o°ly + . 

Fig. 3. Class of Feynman graphs contributing to the muon anomaly for which we shall write 
a Callan-Symanzik equation. 

* In this connection we would like to point out that it is commonly believed that such 
sets of muon vertices are also infrared eonvergent. The authors do not know, however, of a 
formal proof of this statement. 

** Let us point out that the substitution (3.1) should also be carded out in the renormalization 
counterterms necessary to renormalize the original muon vertex. Thereby they become 
functionals of d R as well as functions of a cut-off, A. When the (substituted) eounterterms 
are added to the (substituted) urtrenormalized contributions that also depend on A, the 
eut-off dependence must cancel and we arrive at the finite functional in eq. (3.2). 
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a = ~(m2u,{a dR(q2/m 2, a)} q2), (3.2) 

where we have used curly brackets with a subscript q2 to indicate that ¢ is a func- 
tion of the whole expression within the brackets for all values o fq  2. We have also 
explicitly indicated the dependence on the muon mass, m~, the electron mass, me, 
and the coupling constant, a. The functional ~ does not itself have any dependence 
on a, because each propagator is associated with a factor e, at each end, which is 
taken care of by the factor a inside the brackets. If  we put d R = 1 in eq. (3.2) it re- 
duces to the anomaly due to the original renormalized muon vertex. We are inte- 
rested in the structural properties of this functional in the limit me/m ~ ~ O. 

The photon propagator a d R satisfies a Callan-Symanzik equation of the form 
[20] 

[me -~e~ + J(a) a ~ ]  a dR(q2/m2, a) = a A(q2/m 2 , a), (3.3) 

where A is a function that vanishes for q2 ~ _oo or, equivalently, for m e ~ 0. 
This equation is obtained by studying the photon propagator's response to small 
variations in the physical (renormalized) mass, m, while keeping the unrenorma- 
lized coupling constant, ao, fixed [20]. Such a variation (the right hand side) may 
be expressed in terms of a variation of the physical mass, while keeping the physical 
coupling, a, fixed, plus the remaining variation of the physical coupling (the left 
hand side). On the other hand a dR(q2/m2 , a) is the invariant charge which for 
fixed a 0 only depends on m via the unrenormalized mass m 0. As m 0 only occurs 
in the denominator of the free electron propagator a variation must (by power 
counting) necessarily improve the asymptotic behaviour compared to the asympto- 
tic behaviour of a d R, which is logarithmic. Hence the right hand side must order 
by order vanish for q2 ~ _ oo. The function/3(a) is finite in each order of pertur- 
bation theory and known explicitly up to sixth order [21 ], 

3- ~- + 2- 144 + . . . .  (3.4) 

I f  we apply the operator m e a/am e + [3a3/Oa to the anomaly defined in eq. (3.2) it 
will only act at the a d R part and we find 

(m a + ~ ( o t ) a ~ -  a , a  =qb(m , a d R , a A ) ,  (3.5) 
e ~ e  

where cb is a new functional, proportional to o~ A. (It is simply the integral over the 
functional derivative of ¢ with respect to a dR, multiplied by aA.) Therefore the 
contribution to the muon anomaly from electron vacuum polarization insertions 
obeys a Callan-Symanzik type equation. The predictive power of eq. (3.5) rests on 
the fact that the ratio of  the physical masses mu/m e is large, and, therefore, to a 
good approximation, the study of this equation in the asymptotic regime me/m u 
0 will suffice for our purposes. 
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The crucial step towards simplicity is the fact that the vanishing of aA in the 
limit m e ~ 0 entails the vanishing of the right hand side of eq. (3.5). The proof of 
this, and in particular the estimate of how fast the r.h.s, vanishes, requires a rather 
technical analysis and we therefore relegate it to appendix A. Let us then consider 
eq. (3.5) in the asymptotic region me/m p -~ O. The asymptotic part of the anomaly, 
a~(mu/me, a), is defined in the following way. In each order of perturbation theory 
we let mu/m e ~ o¢ and drop all terms that vanish in this limit. Divergent and con- 
stant terms are kept. As we shall see below the divergent terms are at most lo- 
garithmic so that we have 

( m )  m m 
a *~ , a = B(a) + C(a) log + D(a) log 2 ~ + E(ot) log 3 ~ + . . . .  

me me (3.6) 

where B(ct), C(a) . . . .  are power series in a. The asymptotic part of the anomaly 
obeys a homogeneous Callan-Symanzik equation 

The solution to this equation is 

m ( [ 3 ~ - ~ ) n  = log n , 1 
n =0 m e n! (a)a B(a) ,  (3.8) 

where B(~) in principle is arbitrary, but by comparison with eq. (3.6) is seen to be 
simply the constant term in the asymptotic anomaly, i.e., 

mu a) (3.9) 

B(a)=a** mee' m =m e 

From eq. (3.7) it is clear that only logarithms may occur in the asymptotic anomaly 
as demonstrated explicitly by eq. (3.8). It is also clear that the power of the loga- 
rithm is always smaller than that of a, because both ~ and B vanish for t~ = 0. We 
can then write eq. (3.6) in a more explicit fashion 

+ (~)2 {B2+C21°g ~ }  
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(:)31 m} + B 3 +C 3log +D 3 log 2 
me mee 

(~)4  {B m m m eU} + 4 +C41°g - ~  +D 4log 2 ~ +E  4log 3 
m e m e 

+ . . . .  ( 3 . 1 0 )  

where we have expanded the functions in powers of a/rr. By comparison with eq. 
(2.10) we see that the expressions in the curly brackets are contributions to the 
coefficients An u . Our aim is to spell out the regularities among the coefficients 
B, C, D, E , . . ,  and to show that they may be easily obtained from a knowledge of 
3(a) and B(a) .  

Once B(a) and 3(a) are known, the complete asymptotic part of the anomaly 
is determined. In perturbation theory, knowledge of B(a) and 3(a) up to a given 
order in a, say n, entails the knowledge of the coefficients of the n leading Io- 
garithms in any higher order. This is entirely similar to the renormalization group 
predictions in the case of asymptotic vacuum polarization. Comparing eqs. (3.6) 
and (3.8) we find 

C(a) = 3(a) ~ ~ B(a), (3.11) 

1 ( a)2 1 ,~--~ c(~), (3.12) D(a) = ~-! 3(a) a ~ -  B(a) = ~- 3(¢0 aol 

~-.I ( 0 ~ - )  3 1 O 
E(ot) = 3(c0 ot B(c0 = ~- 3(a) ot b-d- D(a). (3.13) 

In perturbation theory we have explicitly (denothing the coefficients of a/rr in 3(a) 
(eq. (3.4)) by 3n) up to eigth-order 

C 2 = 31B 1 , (3.14) 

C 3 = 32B 1 + 231B 2, (3.15) 

C 4 =33B 1 + 232B 2 + 3 31B3 , (3.16) 

D 3 =/31C 2, (3.17) 

O4 =32C 2 + 3/31 C3 ' (3.18) 

E 4 = 31D 3. (3.19) 

The 3's are all known analytically [21 ]. Of the B's, B 1 and B 2 are known analytically 
[27-29]: 

1 
B 1 = 7, (3.20) 
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25 
B 2 =A~ 36 

97 +rr2 _17r2  log2+ 3 
= 144 12 2 ~- ~ ' (3)=-  1.0229. , (3.21) 

while B 3 is known partly analytically partly numerically. Using the tables in ref. [6] 
we find the numerical result [3, 16, 30, 35]. 

B 3 =A~ + 1.94 (2) = 3.23(6), (3.22) 

where in the last line we have used eq. (2.6). All the coefficients except C 4 may 
now be evaluated analyticblly 

C 2 = -~, (3.23) 

C3 =~__+31 7r 29___ - 3-2 rr 2 log 2 + ~'(3) = - 1 .1139. . .  , (3.24) 

c a = 5.02(12),  (3.25) 

2 
D 3 9  (3.26) 

D4 = ~_ + ~____ ~ _ 7 1  rt 2 2 rr 2 log 2 + ~'(3). = - 0.9472 . . .  , (3.27) 

g 4 = ~7. ( 3 . 2 8 )  

Inserting the values of the coefficients given above into (3.10) we finally find 

(m o) a *° = 0.5 a__ + 0.7658 

+ 3.61 (6) + (B 4 + 22.3(6)) + . . . .  (3.29) 

As expected, we see that the eighth-order mass dependent terms from the class of 
Feynman graphs shown in fig. 3 are completely determined, 

m m m 
C 4 log ~ u  + D4 log2 ____Ume + EA,~ log3 meU _ 22.3 (6). (3.30) 

An amusing numerological feature of this calculation is the strong cancellation 
among the two leading logarithms 
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m m 

D4 log2____u + E  4 log3 u _ 4.47. (3.31) 
m e m e 

This is somewhat reminiscent of  a similar cancellation among the leading logarithms 
in sixth-order 

m m 
C 3 log u + D  3 log 2 ~ = 0.378, (3.32) 

m m 
e e 

which was first observed by Kinoshita [3]. We f'md these cancellations sufficiently 
intriguing to warrant a detailed analysis of  leading powers of  log m~/m e in pertur- 
bation theory. This is the motivation for the appendix B, where the sum of  the 
first three leading powers of  log mu/m e to all orders in perturbation theory is 
carried out. 

The exact value of  the constant B 4 remains unknown. It  contributes to the 
eighth-order mass independent terms of  the anomaly and, presumably, to the 
presently needed accuracy, it can be disregarded. As we shall see in the next section 
it is possible, however, f rom a detailed analysis o f  certain classes of  Feynman 
graphs, to get their corresponding contribution to B 4 without much computational 
effort. 

4. Electron vacuum polarization insertions into the lowest order muon vertex 

The purpose of  this and the next section is to extract the maximal information 
about the eighth-order muon anomaly obtainable from our knowledge of  the 
asymptotic vacuum polarization and the lower order anomalies. The method we 
have used in the previous section is such that, because of  the lumping together of  
all diagrams at a given order, one loses some information about individual dia- 
grams. In this and the next section we want to recover the lost information, 
whenever possible. As we shall see, we shall be able to say more about certain types of  
diagrams, notably the electron vacuum polarization insertions into the lowest 
order muon vertex (see fig. 4) which are the subject of  the present section. 

Fig. 4. Electron vacuum polarization insertion into the lowest muon vertex. 
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4.1. The asymptotic part o f  the photon propagator 

The general expression for the renormalized photon propagator in quantum elec- 
trodynamics is 

dR(q2/m2,  ~) 
-iD~U (q) = - i gUV q2 + qUqV terms. (4.1) 

As before, we shall disregard any contribution due to muon loops, and furthermore, 
we do not specify the precise nature of the longitudinal terms. Since the quantities 
we calculate are gauge invariant these terms will have no influence on the final re- 
sult and we may consistently use only the guy term in eq. (4.1). 

It is convenient to express the function d R in terms of the proper photon self- 
energy function 7rR, 

dR (q2 /m 2, c~) = 

where 

I + n R(q2/m2, o~)' 
(4.2) 

i~R v (q) = _ i(gUU q2 _ qU qV) zrR(q2 ) (4.3) 

is the sum of all proper renormalized self-energy diagrams contributing to the 
photon propagator (see fig. 5). 

The asymptotic part of the photon's self-energy, d R (q2/m2,  ~), for large space- 
like momenta is defined in exactly the same manner as the asymptotic part of 
the muon anomaly in the previous section. In each order of perturbation theory 
one lets -q2 /m2  ~ ~ and drops all terms that vanish in this limit. Divergent and 
constant terms are kept. Since the right hand side of eq. (3.3) vanishes for q2 
- ~  the asymptotic propagator satisfies the Callan-Symanzik equation [20] 

i 7r~ v (q) m + 

Fig. 5. The renormalized proper self-energy tensor i~r~ v (q). 



B. Lautrup, E. de Rafael, Magnetic moment of the muon 329 

?rl e ~ + ~(Ot) t~ O~l R (q2/m2, ct) = O, (4.4) 

which, in complete analogy with the discussion in the previous section, shows that* 

d ~  2, 2 ~) 1 +q(e~)+p(et)log(-q2/rn 2) R ~q /m e, = 

+ r(a)  log 2 (--q2/m2) + s(a) log 3 ( -qZ/m2)  + . . . .  (4.5) 

where q(u),  p(ct) . . . .  are power series in a, of the form 

1 +q (a )=  1 + q l  ~-+q2  +q3 + . . . .  (4 .6 )  

p(ot) = Pl ~- + P2 + P3 + . . . .  (4.7) 

r(~) = r 2 + r 3 + . . . .  (4.8) 

3 
s(ct) = s 3 l ~  ) + . . . .  (4.9) 

They are related to each other via the same kind of  expressions as (3.11) - (3.13). 
This is, however, not very convenient from the point of view of calculating indivi- 
dual contributions to the anomaly. It is better then to express q, p , . . .  in terms of 
the coefficients of/r  R defined by 

rrR( q** 2/me,2 ct) = ~°~ 1 + bl l °g( -q2/m2)  + a2 + b2 log ( -q2 /m2)  

+ a3+b31og(-q2[m2e)+C31og2(-q2/m2 ) + . . . .  (4.10) 

The structure of  this equation follows from the solution of the Callan-Symanzik 
equation for 1 + rr~ which may easily be obtained from eq. (4.4), i.e., 

2 2 2 2 {/3(a)(a~/aa-1) 1 + rr R (q /me, a)= ( -q  /me) (1 + . (c t ) ) ,  ( 4 . 11 )  

w h e r e a ( a ) ; a  1 o~/rr+a2(o~/rr)2+ is the value of rr~ fo rq  2=  m 2 Thenwe 
" " e " 

find 

b(~ )  = ~- t~(~) - ~  - 1 (1 + a (~ ) ) ,  (4 .12)  

4' ~ -  -- 1) b (c 0 . . . .  ( 4 . 13 )  

* The reader should be warned that here we deviate from Adler's notation, ref. [20]. This is to 
simplify notation in later calculations. 
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These equations contain all the renormalization group contraints, *. In particu~.ar, 
it follows from them that there is no log 2 ( - q 2 / m 2 )  term in fourth-order (and in 
general, no logP ( - q 2 [ m 2 )  term in order aP). 

The known values of  the coefficients in eq. (4.10) up to sixth order are: 

b 1 = - -~, (4.14) 

s (4.15) a 1 =7 ,  

- ~- (Jost-Luttinger, ref. [23]), (4.16) b 2 - - 4, 

a 2 = ~ - ~'(3), (Hagen-Samuel, ref. [24],  Lautrup-de Rafael ref. [16]), (4.17) 

= = l ( 4 . 1 8 )  e 3 - ½ b l b  2 - 2 ~ ,  

b 3 = ~ - -~ ~'(3), Rosner ref. [25], de Rafael-Rosner. ref. [21]). (4.19) 

The coefficient a 3 remains unknown. 
From eq. (4.2) we can easily obtain the relationship between the coefficients 

q, p . . . .  and the coefficients a, b . . . .  Up to sixth-order they are 

ql  = - a l ,  (4.20) 

q2 = - a 2  +a~,  (4.21) 

q3 = -- 43 + 2a142 - a~, (4.22) 

Pl  = - b l ,  (4.23) 

P2 = - b2 + 2a lb l ,  (4.24) 

P3 = - b 3  + 2 (a lb  2 + a2b l )  - 3421bl , (4.25) 

r 2 = b 2 , (4.26) 

r 3 = l b l b  2 + 2blb  2 - 341b2 , (4.27) 

s 3 = - b~. (4.28) 

We have tabulated the relationship among coefficients in such a way that it is easy 
to read off  which contributions come from the proper graphs; which from the im- 
proper graphs consisting of  two proper parts; and which from the improper graphs 
consisting o f  three proper graphs. This is explicitly illustrated in fig. 6. 

* For a discussion o f  these constraints,  in connect ion  with the Cal lan-Symanzik equat ion see, 
ref. [211. 
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d~Cq2/m~, ~)- ~ .......... 

a) 

cz 
( -a  1 -61 L) 

b) 

+ ~ + --- 

c) 

-<3<3-, 
~)2 (o12, 2alb ' L * b12 L2~ 

d) 

+ --- 

3 (_a3 _b 3 L + ~- blb 2 L 2) 

e) 

+-@- 

f) 

(~)3 2(ala2 + (alb2 + b2al)L + blb2 L 2) 

g) 

, ~ • o((~)4, 

b13 (~}3 (_a13 - 3a12bl L ,  3alb12 L 2 - L 3) 

Fig. 6. Classes of Feynman diagrams which up to sixth order contribute to the asymptotic pho- 
ton-propagator d R (q2/m2,~,). Their corresponding contribution in terms of coefficients a's, 
b's and L - log (-q2/mZe) are depicted at the bottom of each class of diagrams. Dashes after a 
diagram indicate permutations of internal photon lines. 

4.2. Vacuum polarization:'insertions into the lowest order vertex 

We now turn  to the diagrams depicted in fig. 4 and write a subtracted dispersion 
relat ion for the con t r ibu t ion  to dR(q2/m 2) in the form 

dR(q2/m 2) - 1 - Im [dR(t/m2 ) - 11 
q2 = f  d_t 7r 

t q2 
4m 2 t - 

e 

(4.29) 

It  is therefore clear that  the con t r ibu t ion  to the m u o n  anomaly  from such diagrams, 
which we shall call a(2), is o f  the form 

? dt K(t/m2) l a(2) = 7--- ~- Im (1 - dR(t/m2 )), (4.30) 
4m 2 

e 
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where K(t/m 2) is the muon anomaly due to exchange of a heavy photon with mass 
squared t in the lowest order diagram*. A convenient parametric form of this func- 
tion is, 

K(t/m2u) at x2(1-x) 
=~- 0 y dXx2 +(1.x) t/m 2" (4.31) 

Introducing this expression in eq. (4.30) we find using the dispersion relation (4.29), 

1 

a(2)=~f  d x ( 1 - X ) o  IdR(1-~-x2 ~ ) - ~ "  (4.32) 

This is an exact expression which in principle can be used to calculate the exact mass 
dependence of the contributions to the muon anomaly from the diagrams under 
consideration**. Here, we are interested in the asymptotic contribution to the ano- 
maly, for which we simply have 

1 

m2 at) 1] (4.33) a~2 ) ( mu at)-at f dx(1-x)[d R (1S-s-x~ m 2u 
me ' - ~ 0  ' - " 

e 

As can be seen from eq. (4.32) non-asymptotic contributions from the photon pro- 
pagator are only of importance in the interval 0 < x < me/m u and therefore will 
be at most of order O (me/mu). (This point is discussed more fully in appendix A.) 

We are now in the position to calculate a(2)(mu/me, at) explicitly. Inserting the 
expression (4.5) for the asymptotic photon propagator in eq. (4.33); and defining 
the integrals 

1 
x2 (4.34) I N = f dx ( l-x)  log N 1----Z-~ , 

0 

we find, up to eighth order, 

(m o) m 
a~) = at 8 I 0 s(at) log 3 u 

m 

+ ~ [12 11 s(at) + 4 [0 r(a)] log 2 ~m 
e 

* The reader interested in a more detailed account can consult e.g. ref. [16]. 
** In fact, an exact calculation of the 4th-order diagram in fig. 7a has been done by Erikson 

and Liu, ref. [26]. 
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m 
+ ~ [6 12 s(a) + 4 11 r(a) + 2 10 p(a)]  log 

m e 

+a__ 7r [/3 s(a) +I2 r(a) +I1 p(a) +I 0 q(ct)]. (4.35) 

From this result we can clearly read-off the corresponding contributions to the co- 
efficients B(t0,  C(a) . . . .  defined in eq. (3.6). The interesting thing is that now we 
have explicit information about the mass-independent coefficient B(a)! The inte- 
grals I N are all calculable. We find for the first four values of  N 

I 0 = ~, (4.36) 

_ s (4.37) I 1 - - 4 ,  

12 = ~ + -~ lr 2 = 6.540 . . . . .  (4.38) 

i3 = _ ~7 _ ~ rr2 _ 6 ~'(3) = - 42.76 . . . .  (4.39) 

In order to find the explicit contribution to a(*~) (mu/me, ~) from any of  the groups 
of Feynman diagrams shown in fig. 7 we have only to insert the corresponding 
values for the coefficients q(tO, p(a) . . . .  in eq. (4.35). These values can be read-off 
from the corresponding vacuum polarization diagrams in fig. 6. We then obtain the 
following results: 

Fourth-order 

There is only one mass dependent diagram at fourth-order (fig. 7a). We fred 

a(2a)= - a l I ° - b l I 1 - 2 b l I 0 1 ° g  mee [ 36 +3- l°gm--~e 

= 1.083 (~-) 2 -  , (4.40) 

which is the well known result first obtained by Suura and Wichmann [27] and 
Peterman [28] * 

Sixth-Order 

There are two types of  diagrams, figs. 7b, 7c which correspond respectively to 
the proper and improper fourth-order vacuum polarization insertions. For the 
proper type contribution we have 

* See also the previous footnote. 
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a) 

b) c) 

d) e) 

f) g) 

Fig. 7. Vacuum polarization insertions into the lowest order muon vertex: (a) fourth-order con- 
tribution; (b) and (c) sixth-order contribution; (d), (e), (0 and (g) eighth-order contribution. 

a(2b) = 3 _ a2Io _ b211 _ 2b210 log ~ e  

( ~ ) 3  [_52 1 1 mU~el ( ~ ) 3  = + ~- ~'(3) + ~- log = 1.517 , (4.41) 

which is the result first obtained by Lautrup and de Rafael [16] using dispersion 
methods only .  

For the improper type contribution we have 

+ (4 a lb l I  0 + 4b 2 I1)!log m emu + 4b 2 10 log 2 mU__me } 
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/ = ~324- 27 27 log + 9- l°g2 mee 

= 2.724 , 

which is the result first obtained by Kinoshita [3]. 

(4.42) 

Eighth-order 

In eighth-order there are two types of improper vacuum polarization insertions, 
which give contributions as indicated in figs. 7f and 7g, and two types of proper in- 
sertions: one-fermion loop type, which give contributions as shown in fig. 7d, and 
two-fermion loop type, which give contributions as shown in fig. 7e. 

There are altogether 18 proper diagrams (15 of the one-loop type, fig. 7d; 3 of the 
two-loop type, fig. 7e). Their total contribution to the muon anomaly is 

(~)  {_ m 
4 a3I 0 b3I 1 c3I 2 - (2 b3I 0 + 4c 3 I1)log u a('2d'e) - -- -- me 

- 4 c3I 0 log 2 ~ . (4.43) 

Everything except a 3 is known here. Evaluating what we can, we get 

(~_)4 ( 1 287 n2 5 / 67 1 )) m 
a(2d'e) = /-- ~- a3 + ~ + 7-2- -- 1--2- ~'(3) + [-- ~ -  + ~- ~'(3 log m ~e  

mm-~e~ } (~)  
1 4 

+ ~ -  log 2 -- {- ½ a 3 + 1.168} . (4.44) 

It would be interesting to know a 3 (see eq. (4.10)), which presumably contains 
higher transcendentals. 

There are 6 diagrams of the improper class shown in fig. 7f. their total contribu- 
tion to the muon anomaly is 

( t4{ a(2f) = 2a 1 a 2 10 + 2(alb 2 + bla2) I 1 + 2blb2I 2 

m m-ee} + [4(alb 2 + bla2) I o + 8blb211 ] log ~ +  8blb2Io log 2 mu 
m e 

(~)4  /509 7r 2 25 5 2 m 1 mu} 
= ~4---~ + I-8 ~-~ ~'(3) + [--~- + ~- ~'(3)] log me~ + ~- log 2 

= 7.140 (~)  4 (4.45) 
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We are left with the triple-bubble graph, fig. 7g, which is the only one contri- 
buting a log 3 mu/m e term to the anomaly, for which we find 

a(2g)= (~) 4 {-a~[o-3a~bl[1 -3alb~I2-b~lr 3 

m 
+ ( - 6 a  2 b 110 - 12albl  2I 1 - 6b 2 I2 ) log 

m e 
m m } 

+ ( - 1 2 a l b 2  10 - 12b~/l}lOg2 ~UeU-8b ~ I 0 log3 m-~e 

= ( ~ ) 4 ( _  8609 25 2 . 2  /317 27r2~ log m 
5832 162 rr - -~ -~ (3 )+  ~162 + 27 ] m e 
m mu} 

2725 log 2 me-- + ~ l°g3 mee (4.46) 

= 7.197 ( ~ ) 4  

We see that we have been able to extract the full contribution to the asymptotic 
eighth-order muon anomaly from all the improper sixth-order electron vacuum polari- 
zation corrections to the second-order muon vertex. 

5. Single electron vacuum polarization insertions into arbitrary muon-vertices 

We now turn to the more general case of  vacuum polarization insertions into a 
single photon line in an arbitrary muon vertex. This is illustrated in fig. 8a. By simi- 
lar argument as above we obtain again eq. (4.30) where K(t) is the anomaly due to 
muon diagrams with one heavy photon of  mass x ~ ,  (fig. 8b). From inspection of  
the diagrams one sees that K(t)  is analytic in t everywhere except on the negative 
real axis where it must have a cut. Furthermore since K(t)  ~ 0 for t ~ 0% we may 
write an unsubtracted dispersion relation for it *, 

0 
1 1 

K(t)= f d t ' t , _ t  nlmK(t')" 
_ o a  

(5.1) 

* Notice that for t ~ 0 

K(t) = lim Fz(q 2, t); 
q2.-~_ 0 

and F2 (q2,t) in pure Q.E.D. is real for q2 < 0 because of the absence of anomalous thresholds. 
The fact that K(t) ~ 0 for t -~*~:ls equivalent to the fact that the anomaly is independent of a 
photon propagator cut-off. 
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a) b) 

Fig. 8. (a) General structure of diagrams with electron vacuum polarization insertions in only one 
photon line; (b) the corresponding diagrams with a massive photon contributing to the function 
K(t). 

It is useful to introduce the notation 

l l m K ( t ) = - k ( - t / m 2 u ) ( ~ ) P ,  (t < 0), (5.2) 
rr 

where we have factorized the quantity (ct/rr)P which appears in 2p th order. Then, the 
analogue of (4.33) is 

Of m2 y ~ (-  t-11. 
Terms neglected in using the asymptotic propagator arise from the region below and 

2 2 aroundy = me/m u. From the fact that K(0) is finite we deduce that k(y) vanishes for 
y ~ 0; and therefore the neglected terms vamish in the limit me/m ~ ~ 0 (see appen- 
dix A for more details. 

Introducing the explicit form of the asymptotic photon propagator into eq. (5.3) 
we obtain again an expression for the anomaly of the type written in eq. (4.35) ex- 
cept that now, the integrals I N are 

Y-  k(y) log N y. 
0 

(5.4) 

Except for N = 0 these integrals are not in general known analytically. For I 0 we 
have 

o a  

which in 2p th order is just p times the anomaly obtained from the corresponding dia- 
grams without electron insertions. The reason for the factor p, is the p different pho- 
tons into which we may insert the electron loops. We shall next discuss various ap- 
plications of  these formulas. 
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~ ~t ~t 

Fig. 9. Fourth-order muon vertices. 

5.1. Proper fourth-order electron vacuum polarization insertions into the fourth- 
order muon vertices 

There are'altogether seven muon vertices in fourth-order (see fig. 9). Each muon 
vertex has two internal photon propagators i.e., two different ways to insert the 
three independent iSroper fourth-order electron vacuum polarization corrections. 
Altogether, this makes a total of 42 eighth-order Feynman diagrams (see fig. 10). 
For these diagrams we are able to extract the contribution to the asymptotic muon 
anomaly, mass independent terms included. Indeed, let us call a(**4,4)(mu/me, ~) their 
corresponding contribution. From eq. (5.3) we obtain 

.o (~___~ a ) (_~)4 {_ m u }  
a(4'4) e '  = a2Io -- bEI1 -- 2b210 log ~ . (5.6) 

The integral I 0 is known. It is twice the value of the fourth-order anomalous magne- 
tic moment of the muon from the diagrams in fig. 9 i.e. *, 

/197 ?t 2 1 9 I 0 = 2 \144 + I T  - 2- ,2 

The integral I 1 is not known a priori. There is however one extra piece of informa- 
tion we have not used as yet, i.e., the contribution to the muon anomaly from second 
order electron vacuum polarization insertions into the fourth-order muon vertices. 
These sixth-order contributions are known**, partly analytically, partly numerically. 
If we call a(~4,2)(mu/me, ~) their corresponding contribution to the anomaly, we have 
according to eq. (5.3), 

mt~ 3 m u 
a~ '2 ) ( -~e  'Or)= (~) { - a l [ o - b l [ 1 - 2 b l [ o l O g m e } ,  (5.8) 

* This is the famous analytic calcualtion of Peterman, ref. [28] and Sommerfield, ref. [29]. 
** For a detailed review of these calculations see ref. [6]. 
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~ '-I-- . ~i . .I- .  
b) 

~ '-b. . ~ + .  

d) 

"t- . + .  

kt 
~t 

f )  
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" l - ~ ~  --I- . 

g)  

Fig. 10. Proper fourth-order electron vacuum polarization insertions into the fourth-order muon 
vertices. 

where I 0 and I 1 are the same integrals as in eq. (5.6). The similar structure of  eqs. 
(5.6) and (5.8) is due to the fact that second and fourth-order proper vacuum polari- 
zation insertions are both linear in log (-q2/me2) (see eq. (4.10)). The result of  a direct 
calculation*, of  a(4,2)(mJme, ~) is 

,61~2 ,,194 t m ~1 m ) (~3 { ' ~ ~ ÷  ~ ~21°~ - ( me 
a~'2) mee '~  = + 0 0 4 + 0 0 5 + [  31 5 2 2 2, )) • - " \ 12 +~-rr -~-rr Log2+~'(3 log . 

(5.9) 

The first line above corresponds to the contribution from the diagrams in fig. 11, 
which is known analytically [30], the second line to the other contributions** [35]. 

* See footnote** of previous page. 
** There are other diagrams for which the constant terms have also been calculated analytically 

recently, see refs. [31, 32]. They do not however, constitute a gauge invadant subset. 



340 B. Lautrup, E. de Rafael, Magnetic moment o f  the muon 

~ . . ° 

Fig. 11. The sixth-order diagrams for whicht he cor~tant term in eq. (5.8) is known analytically. 
See ref. [30]. 

From the comparison between eqs. (5.8) and (5.9) we can get the values for the 
integrals I 0 and [1, corresponding to the analytically known part and the numerically 
known part separately• Upon substitution in eq. (5.6) we finally obtain 

m 1 i473 +,,9 2 2 ~ ~'(3) - ~- rr ~'(3) - -  3 

+ 0 96(5)+ 57r21og2 +3 
• 16 12 4 m e 

(5.10) 

where the first line corresponds to the contribution from the diagrams in fig. 10g and 
the second line to the total contribution from the other diagrams (figs. 10a-f). Nu- 
merically, we have 

(m o) 
a~'4) m-e' = {-7.554 + -0 .87  (5)) = -8.43(5) (5.11) 

6. Summary of  results and conclusions 

We have shown that the electron vacuum polarization contributions to the muon 
anomaly satisfy a Callan-Symanzik equation, which allows us to predict the mass 
dependent terms from all such diagrams in eight-order as well as verifying lower 
order contributions• The mass independent terms could not be determined from the 
Callan-Symanzik equation alone. The input to the eighth-order calculation was the 
mass independent terms in the muon anomaly (known up to sixth-order) together 
with the/3-function occurring in the Callan-Symanzik equation for the photon propa- 
gator (also known up to sixth-order). The calculation itself was reduced to simple 
algebra. 

Using a flightly more detailed analysis we were able to calculate analytically the 
mass independent terms from the improper sixth-order electron vacuum polarization 
insertions into the second order vertex (the 7 diagrams in fig. 7f, g). We were also 
able to calculate the complete coritribution from the proper sixth-order insertions 
(the 18 diagrams in fig. 7d, e) in terms of one unknown parameter, the constant 
term in the asymptotic vacuum polarization in sixth-order, Finally we were able to 
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~ ° . • 

~ • ° • 

Fig. 12. Mixed double and triple bubble diagrams that may be evaluated at the expense of one 
(rather difficult) integral. 

Fig. 13. A special kind of mixed vacuum polarization insertions. 

/ \o 
a )  b )  

• ° ° 

c )  d )  

~ " ~  • ° ° 

e) 

° • 

f) 
Fig. 14. Dmgrams with photon-photon scattering parts. 
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determine numerically the constant term from the proper fourth-order electron va- 
cuum polarization insertions into fourth-order vertices (the 42 diagrams in fig. 10). 
Thus, for 49 eighth-order diagrams the complete contr ibution is known. Only one 
diagram, the triple bubble in fig. 7g, required the evaluation of  an unknown quanti- 
ty, namely the integral in eq. (4.39). I t  is clear that  at the expense of  one integra- 
tion (analytic or numeric) one may also use the techniques of  sect. 5 to evaluate 
the mass independent terms from the 12 mixed double and triple bubble diagrams 
indicated in fig. 12. 

There are altogether 1360 diagrams contributing to the eight-order muon anoma- 
ly. Of these, 891 only involve muons and are therefore identical to the corre~, 
sponding electron contr ibution A~ about which nothing is known. Of the other 
469 diagrams, we have calculated the mass dependent  terms of  all the electron va- 
cuum polarization insertions (i.e., 304 diagrams)*. For  49 of  these diagrams (the 
7 diagrams in fig. 7f, g and the 42 diagrams in fig. 10) we have evaluated the con- 
stant terms as well. The remaining 165 diagrams are either a special kind of  mixed 
vacuum polarization (fig. 13) or contain photon-photon scattering subgraphs (fig. 
14) **. It is known [9] that the diagrams in fig. 14a could give a very large contri- 
bution,  of  the order of  180 (a/rr)4, ***. The diagrams in fig. 14b, c, d, are expected 
to be less important  because they do not  have a logari thm.generat ingelectron va- 
cuum polarization insertion. For  the diagrams in fig. 14e, f, an application of  Kino- 
shita's theorem on mass singularities [22, 33] indicates that  they have no logarith- 
mic dependence on the mass ratio. I t  is not  clear whether the diagrams in fig. 13, 
have a logarithmic contribution.  

The result of  the contr ibut ion to the muon anomaly from the mass dependent  
terms of  all the eighth-order diagrams that are electron vacuum polarization cor- 
rections, is 

* This is the number of topologically distinct proper diagrams with non-zero contribution. 
Writing 

304=1X 72× 3 + ( 3 + 1 )  X 7X 2 + ( l X  1) X 7 ×  1+(18+6~-1) X lX  1 

we have first the contribution from a second order electron vacuum polarization insertion~ 
(1 diagram) into the sixth order muon vertex (72 diagrams). Each insertion can be done in 
3 different ways. The next term is the contribution from fourth order (proper + improper) 
vacuum polarization in the fourth order vertex. Then follows the contribution from two 
second order insertions into'two different lines of a fourth order vertex, and finally the 
sixth order insertion into the second order vertex. 

** The number 165 is given by 

1 6 5 = 3 + ( 3 +  3 + 8 + 1 0 )  X 6 + 3 X 6 ,  

corresponding to fig. 13 and figs. 14a-f respectively. Fig. 14a for instance is 3 X 6 because 
there are 3~ays of inserting the vacuum polarization blob into the 6 sixth order vertex dia- 
grams with photon-photon scattering subgraphs. The diagrams in fig. 13 were not included 
in the discussion in re/. [9]. 

*** Barring for possible cancellations between leading logs of the type encountered in the elec- 
tron vacuum polarization insertions. 
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(~--) 4 {2~ m 7I ~ 7r 2 )1 l°g3 m----eU + + 9 3"2 rr 2 log 2 + ~'(3 log 2 - -  

+ 5.02(12) log = 22.3 (6) 

m bt 
m e 
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Note added in proof 

M. Samuel (Oklahoma State University preprint, November 1973) has recently in- 
dependently reevaluated the 8th order anomaly using Kinoshita's method [3]. His 
results agree with ours where comparison is possible. 

Appendix A. Proof of the Callan-Symanzik equation for the asymptotic anomaly 

In this appendix we shall be concerned with the detailed derivation of the asymp- 
totic Callan-Symanzik equation (3.7) from the non-asymptotic equation (3.5). 
From Weinberg's power counting theorem [34] it follows that for q2 ~ _oo, the 
function A(q21m2e) vanishes as m21q 2 times possible powers of log q2/m2. One 
would then naively expect that the r.h.s, of eq. (3.5) vanishes as m~/m 2 times powers 
of log mulm e when m e ~ 0: That this is not the case is borne out by an explicit 
calculation of the fourth-order contribution to the muon anomaly from the Feyn- 
man diagram in fig. 7a. It is found [26] that 

(~)2 {1 ~ 25 ¢r2 me / 
a(Ta) = log 26 + ~ ~ + . . . .  ) (A.1) 

/ ............. \ > 

Fig. 15. Illustration of the type of diagrams that contribute to the evaluation of the right hand 
side of the Callan-Symanzik equation. 
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I J t q  

a) b) 

Fig. 16. Diagrams for K(t/m~, me~m). 

i.e., the non-asymptotic terms are linear in the mass ratio and not quadratic. Hence, 
our naive expectations are wrong and a more careful analysis of the transition from 
eq. (3.5) to eq. (3.7) is required. 

The right hand side A(q2/me, a) of the Callan-Symanzik equation for the photon 
propagator satisfies an unsubtracted dispersion relation in q2 

A(q2/m2) = ? dt_._t___ 1 Im A(t/m2). (A.2) 
0 t-q 2 ~r 

This follows from eq. (4.29) by applying the Callan-Symanzik operator to both 
sides and using that for q2 _+ _oo we know that A vanishes. Let us denote the right 
hand side of eq. (3.5) by R(me/m~). Using the dispersion relation above for A we 
see that we may write 

R ~ ) = /  ~dt L~K[0'me I - K ( \  m l m2ut" ~ ) 1  xrrllmA(t/m2), (A.3) 

where K(t/m 2, m /m ) is the anomalous magnetic moment from the diagrams where 
bt e 

all photon propagators but one have been substituted acccording to (3.1) and the ex- 
ceptional propagator has been given a photon mass x/t. This is illustrated with an 
example in fig. 15. Scaling the t variable we may transfer all the dependence on 
m e to the anomaly 

** 2 

Since rr -1 Im A(x) vanishes for x ~ ~ as 1Ix (apart from logarithms) the integral is 
dominated by.the small x behaviour 6f the integrand, i.e. by the way K(t/m 2, me/ 
my) approaches K(0, me/rn~) for t ~ m 2. 2 

The vertex function giving rise to K(t/m~, me~ms) (fig. 16a) may be expressed 
in terms of the double Compton amplitude C~(k, P2, Pl) (fig" ! 6b) 

i r  d4k Cu(k'P2'Pl) (A.5) 

k2_t 
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Then, the difference K(0, me/mu) - K(tlm2u, melrnu) is given by 

V(P2, Pl 0 ) - V ( P 2 , P l  t ) = t i (  .d4k 
~ ( k ,  P2,P 1) 

, , d(2rr) 4 ~ ( ~  _ ~  . (A.6) 

The factor t = x m2e/m 2 in front of this integral reflects our naive expectation that 
R vanishes as m2/m 2. This however can be masked by the possibility that the inte- 
gral over k may diverge. Our aim is to estimate how badly it can diverge. The ttiver- 
gence is of the infrared type and we may use the usual power counting methods 
for estimating its strength. Thus, of the three types of diagrams shown in fig. 17 the 
one where the t-photon is attached to both~he external legs, (c), is the most diver- 
gent; the one where only one end is attached to an external leg, (b), is less divergent 
while the one where the t-photon is attached to two internal vertices, (a), is the 
least divergent. Since the Fermion propagators (p + k) 2 - m 2 = k 2 + 2p. k are 
linear in k for k --> 0 we expect only type (c) to give a divergent contribution of 
the strength d4k/k 4 ~ log t to the integral in eq. (A.5), while (a) and (b) are con- 
vergent. On the other hand we know that the anomalous magnetic moment ex- 
tracted from eq. (A.5) by means of a suitable projection operator is convergent 
for t = 0, so the apparent logarithmic divergence of diagram (c) must some- 
how be cancelled in the anomaly. (We shall see in a moment that the terms respon- 
sible for this cancellation are the renormalization counterterms to the diagrams in 
fig. 17a). Turning now to the difference in eq. (A.6), we conclude that the leading 
divergence which is naively quadratic must also cancel here. Thus instead of be- 
having like d4k/k 6 ~ l i t  the divergent contribution to the anomaly of (A.6) from 
diagram (c) must behave like d4k/k 5 "" 1/x/7-or better. Hence 

K - K mu muu ' 

apart from possible logarithmic factors. This implies via (A.4) that the leading be- 
haviour of the r.h.s, in the Callan-Symanzik equation is of the form 

()m 
R m~ = ~  F \(I°gmUlme] (A.8) 

The logarithms arise partly from the remifining vacuum polarization insertions and 
partly from possible logarithmic enhancements of the infrared behaviour of the 
blob insertions in fig, 17b and c. 

Finally we shal show explicitly how the infrared divergence of the contribution 
to (A.5) from fig. 17c is cancelled by renormalisation subtractions. The correspon- 
cling vertex amplitude is 

le" 2 (  "d4k 7P('~2+ ~+ mu)W~(P2+k' Pl+k)(/~l+J~ + mu)TP, (A.9) 

V(¢))(D~2, Pl ) J (-~)4 (k 2 + 2/92. k) (k 2 + 2Pl .  k) (k 2 - t) 
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q 

P2 "~ ~ Pl 
%* k s" 

c) 
Fig. 17. Contdbutions with different infrared behaviours. 

I I - I  , / \ / 
I X I(t,o) 

\ 
Fig. 18. Second order correction to the vertex where the external photon is attached, and its 
subtraction constant. 

where W u is the vertex function of the blob in (fig. 17c). To isolate the infrared 
divergence we put k = 0 in the numerator and use the Dirac equation to obtain 

V(C)(p2, pl  ) = W (p2Pl) l(t, q2), 

where 

• 2 f d 4 k  4Pl "P2 

I(t, q2 )= le  j(27r) 4 (k 2 + 2 p l  . k ) ( k  2 + 2 p  2"k) (k  2 - t )  

1 1 x (m  2 _ ½ q2) 

-~fd~fay 
0 0 x2(m2 u -  Y(1--y)q 2) + (1 -- x ) t  

We clearly see the logarithmic divergence, 

1 

--~-, for t = 0. 
0 

(A.10) 

(A. 11) 

(A.12) 
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Because we work with a renormalized theory we must subtract the unrenormalized 
amplitudes. Although the unrenormalized diagrams of type (a) and (b) are infrared 
finite for t ~ 0 this is not the case for the corresponding subtraction constants. In 
fig. 18a diagram of this type is shown. The infrared part of the subtraction con- 
stant is just the integral in (A. 11) at q2 = 0, such that we have the complete in- 
frared contribution to V u 

V(P2, Pl ) = Wu(P2, Pl)  (I(t, q2) _ I(t, 0)), (A.13) 

which vanishes in the static limit, q2 = 0. We remark that the second order sub- 
traction constants arising from other integral vertices are exactly cancelled by the 
electron propagator subtractions due to Ward's identity. Subtraction constants for 
higher than second order vertex corrections are not divergent for t -~ 0 in the static 
limit. 

Appendix B. Summation of leading logarithms 

From the structure of the Callan-Symanzik equation it follows that if one knows 
and B to p'th order in a/n then one can calculate the p leading logarithms in all 

orders. Writing 

¸) IMP)+ lo 2 ImP) 
ImP) } +Zp log p-3 + . . . .  (B.1) 

We fred from the Callan-Symanzik equation (eq. (3.8)) the following recursion for- 
mulas for the coefficients X, Y and Z: 

Xp = {31 Xp_l, (B.2) 

p-1 
& = ~1 ~ Yp-1 + [J2Xp-2 ' (B.3) 

Zp = ~l Pp~13 Zp_ 1 +/~2 P---~_-32 Yp_2 + ~3 Xp_3 , (B.4) 

with the initial conditions 

X I = B 1 ;  Y2 =B2; Z3 =B3" (B.5) 

Solving eqs. (B.2) - (B.4) we find 

Xp = ~ - I B 1 ,  (B.6) 

Yp = (p -1 )  3p-2 B2 + 09 _ 1) ~ 32~1-3B1 , (B.7) 
k = 2  
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zp = ½ (p-1)(p-2) av-3 
Pl 3 

+ ( p -  l ) (p -2 )  f12/~ p-4 B 2 
k = 3  - 

+ ½ (p - 2 ) (p -3 ) /33~-4  B 1 

+(/O--1)(/O--2) ( P s  1 k ~ 2  ~__~_) ~ P _ 5 B 1  " (B.8) 
k ~ 4  ~=2  

We are now able to answer the question whether the two leading logarithms always 
tend to cancel each other. Let us def'me the ratio 

Yp 32 ( P ~ I  1 f31B2 I 
'~P-£-7=~P-1)y1  t~= 2 ~+~281J " 

(B.9) 

The first numerical values are 

R 2 = - 3.07, (B.10) 

R 3 = - 5 . 0 1 ,  ( B A  1) 

R 4 = - 6.39. (B. 12) 

Since log mJm e = 5.33 this means that the two leading logarithms for small p tend 
to cancel. For p -* oo it is, however, evident that the ratio eventually will change 
sign and diverge as + p log p. The ratio reaches its minimum Rmi n = - 9.10 for p = 
- 1 0  and becomes positive from p = 24 onwards. 

The expressions for X, Y and Z look very summable. Instead of attempting a 
direct summation it is simpler to solve the Gell-Mann, Low equation for the effec- 
tive fine structure constant ~-(t), 

dff (B.13) 
d--/- = ~ ~(~)' 

with the boundary value ~ (t = O) = or. Then it is easily verified that the solution to 
the Callan-Symanzik equation (3.8) is 

m~__~ o~) B(~(t))lt_ log mu/me = Bl ~ + B2 (~) 2 (~_)3 a o* , = _ ~-  + B 3 + . . . .  ( B . 1 4 )  

Eq. (B,F3) may be solved for t 

t= f d~ (B.15) ~-~-;), 
ot 
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which when expanded in leading powers of a and ~- becomes 

t = _ ~ _ ( l _  1 )  132 1og~+(/$22 /$/$-~-) 
-/$--~- \ / $ ~ -  ( ~ - ~ )  + . . . .  (B.16) 

This equation may be solved to higher and higher precision by a set of successive 
approximations. Keeping terms of order aP tP, aP tP-1 and aP tP -2 we Fred with 
z = (ot/Tr)/$1 t 

~ _  1 [a~ /$2 
a 1-z  ~Tr] /$1 (~_)2/$ 2 log2(l_z) log ( l - z )  log ( l - z )  + - - z 

( l - z )  2 ( l - z )  3 

(~) 2/33 z + 

+ /$1 (l--z) 3 . . . . .  

Inserting this into (B.14) we finally arrive at the summed up expression for the 
anomaly 

c~ B1 .(m) 1 
a me ' - 7r 1--~- + (1----~) -BI/$1 ( l - z )  2 " 

/32 log( l - z )  +B 1 153 
2B2/$1 (l--z) 3 fll 

(B.17) 

+ (~)3 { B3 z 

(7-z)  3 ( l - z )  3 

+B1 (~_ )2  l o g 2 ( 1 - - z ) _ l o g ( l _ z ) _ z }  4 

where z = (t~/rr)/31 log mu/m e. This expression which is correct to three leading 
logarithms is of course equivalent to (B.6)--(B.8). The first term has previously been 
found by Terazawa [36]. 
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