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Abstract: The leading contributions to the anomalous magnetic moment of the muon due to
electron vacuum polarization corrections are governed by the short-distance behaviour of
the photon propagator. It is found that the formulation of this relationship in terms of a
Callan-Symanzik equation for the muon anomaly is extremely useful for an actual evalua-
tion of the leading mass dependent terms (i.e., terms proportional to powers of log m /me).
This enables us to predict all the mass dependent terms from a large class of eighth-order
Feynman diagrams, in addition to verifying previously calculated lower order contributions,
without much calculational effort. We emphasize that “light-by-light” type contributions
are not included in this calculation. We have also been able to evaluate the mass indepen-
dent terms contributing to the muon anomaly from a more restricted class of Feynman dia-
grams,

1. Introduction

It has already been known for some time that there is an intimate relationship
between the renormalization group [1-2] and some of the mass dependent terms
(i.e., terms proportional to powers of log m“/me in the muon anomalous magnetic
moment. The first systematic investigation of this relationship was done by Kino-
shita [3] in connection with the calculation of part of the sixth-order contribution
to the muon anomaly. Because of the renormalization group structure the calcula-
tion was reduced to simple algebra.

One source of mass dependent terms in the muon anomaly are muon vertex
graphs with electron loop insertions in the photon propagators. Various examples
are shown in fig. 1. Because of the large mass ratio, m “/me ~ 200, one expects
that the asymptotic part of the electron loops will play a dominant role. In other
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Fig. 1. Examples of graphs which give mass dependent terms to the muon anomaly,

words, one expects that the leading contributions to the muon anomaly from elec-
tron vacuum polarization corrections are governed by the short-distance behaviour of
the photon propagator,

Recent years have seen great progress in the understanding of short-distance be-
haviour in field theory. It has been shown independently by Callan [4] and Sy-
manzik [5] that the Green functions of any renormalizable field theory satisfy
certain partial differential equations with respect to the masses and coupling con-
stants, These so-called Callan-Symanzik equations are the local form of the
global transformation laws taking the theory from one subtraction point to another,
It is then perhaps not surprising, as will be shown below, that the part of the muon
anomaly which is due to electron vacuum polarization corrections only, by itself,
satisfies a Callan-Symanzik type equation, and that this equation, in the asymp-
totic regime where m/m u = 0, embodies all the renormalization grouip relations.

The last few years have also seen great progress in the calculations of the elec-
tron and muon anomalies, up to sixth-order *. This development has been moti-
vated by a parallel improvement in the accuracy of the experiments **.

In the electron’s case, the anomaly can be used to obtain an almost competitive
value in accuracy for the fine structure constant. The forthcoming muon g—2 ex-
periment at CERN will not only test our knowledge of quantum electrodynamics
but also of numerous other effects, in particular the hadronic corrections ***, It

* For a review of the situation (by the end of 1971) see ref. [6].
** For a review of the experimental situation (by the beginning of 1972) see ref. [7].
*** For the most recent estimate of the hadronic corrections to g”—2, where earlier references
can be found, see ref, [8].
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has been estimated [9] that the eighth-order contribution to the muon anomaly
from mass dependent terms may be larger than the contribution due to weak inter-
actionst and comparable to the future experimental precision. It would be nice,
therefore, to have an exact calculation of these eighth-order mass dependent terms.

This paper is primarily devoted to a study of the short-distance behaviour of the
photon propagator, in connection with the determination of the radiative correc-
tions to a static quantity like the muon g-factor. We shall then use the powerful
techniques of Callan-Symanzik equations for an explicit calculation of a large class
of diagrams contributing to the muon anomaly in eighth-order. In contrast to the
conventional renormalization group method [3], which treats classes of diagrams
separately, the Callan-Symanzik formulation allows for a global calculation of mass
dependent terms at a given order without having to consider the contributions from
individual diagrams separately, We emphasize, however, that an important class of
diagrams, i.e, those with light-by-light scattering insertions, cannot be estimated
using this technique.

The paper is organized in the following way. In sect. 2 we present a short review
of the theoretical and experimental situation concerning the anomalies, in order
to spare the reader the trouble of searching the literature. In sect. 3 we derive the
Callan-Symanzik equation for the muon anomaly and use it to calculate the mass
dependent terms in eighth-order., For a more restricted class of diagrams we are
even able to calculate the corresponding mass independent terms. This is done in
sect. 4 for the electron vacuum polarization insertions into the lowest order muon
vertex, and in sect. 5 for insertions into arbitrary muon vertices. In sect. 6 we
summarize the results and present the conclusions. We have relegated to appendix
A the more technical discussion of the correction terms to the asymptotic formulae
used in the text. In appendix B we carry out explicitly the evaluation of the first
three leading powers of log mu/me to all orders of perturbation theory.

2. The lepton anomalies

The latest result in the long series of measurements of the electron g-2 is the one
by Wesley and Rich [12], with the value *

a™P = 0.0011596567(35). (2.1)

For the muon anomaly the latest experimental value obtained by the CERN group
[14] is

™ =0.00116616(31). (2.2)

t Our understanding of the weak contributions;to g,, —2 has evolved considerably with the advent
of the unified gauge theories of weak and electromagnetic interactions. For a review of the
relevant calculations see refs, {10, 11].

* This is the number given by Granger and Ford ref. [13] which corrects the previous value of
Wesley and Rich ref. {121,
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The next CERN experiment is expected to improve this number by a factor of 20
in the uncertainty.
The theoretical value for the electron anomaly is of the form

QED _ 4e & e (@) 2 e (@)3 a 4
a2 = 45 % 1 45 (;r-) + A5 (;) a9 23)
where the coefficients are *
A5 =1, (2.4)
e 197 7 1 3 e(3)=_
A5 =t -7 M log 2+ 38(3)=-0.32848 ... | (2.5)
Ag =1.29 (6). (2.6)

The eighth-order coefficient Ai is totally unknown. It has contributions from 891
diagrams . . . The leading mass dependent term has been shown [16] to give a cor-
rection to the A5 coefficient which is

Ae—>Ae+i—(Tf)2+0[(m—e)4:| 2.7)
2742 55\ m. ] ) :

and can therefore be disregarded at the present level of needed accuracy. From the
first three powers of a/x in (2.3); and inserting the value [17]

a1 =137.03608 (26), (2.8)

we find the theoretical prediction
a'=0.0011596529 (24) (2.9)

in reasonable agreement with the experimental value (2.1).
For the muon, the situation is as follows. The purely quantum electrodynamics
effect is of the form

ED _ o )2 a3 a4
a2 -Ag(;)mg (;) +Ag(7?) +Ag(;) to (2.10)

* For fourth order see ref, {29]. There are many contributors to sixth order; in particular there
are three different evaluations of the bulk of the diagrams [15]. As we are not concerned
with evaluating a current “best value” we have arbitrarily chosen, the number quoted in ref.
[15a], and warn the reader against misquotation of it. (See ref. [15] (or [6]) for the early
history).
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where the coefficients 4¥,7=2, 3,4, ... depend now in a crucial way on the
me/m . mass ratio. The corresponding numerical values are *.

Ak =1, (2.11)
A% =0.76578, (2.12)
A44=23.0(2). (2.13)

The large value of A‘;‘ is essentially due to a new source of mass dependent terms, the
light by light scattering contribution [18] shown in fig. 2. An educated guess {9]

of the contribution to the eighth-order coefficient A4 from all possible sources of
mass dependent terms (469 diagrams) predicts

A% ~150 — 200, (2.19)
Evaluating eq. (2.10) and adding the strong interaction contribution [8]

aStrome = 68 (9) X 1079, (2.15)
we find the theoretical prediction

aLh =0.001165897 (10). (2.16)

We have here left out the estimated eighth-order contribution (~5 X 10~9) and the
weak contribution (~ 2 X 10~2)**, The theoretical and experimental values agree
within one standard deviation.

The next CERN experiment is expected to yield a precision better than 15 X 109,
in which case it begins to be of interest to have a more precise evaluation of the

o

Fig. 2. Contribution to the muon anomaly from light by light scattering which gives the do-
minant contribution to the sixth-order coefficient 4% .

* For fourth order see ref. {26—28]. In sixth order a number of authors have been involved
(see ref. [6] for the history and references). The number we quote is obtained from eq. (2.6)
using the improved light-by-light value {19] and adding the result of ref. [15a] (see the pre-
vious footnote).

** See footnote! page 3.
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eighth-order contribution arising from the dominant mass dependent terms. The
following sections are a step towards that goal.

3. The Callan-Symanzik equation for the muon anomaly

As mentioned in the introduction we shall limit ourselves to the type of Feyn-
man diagrams shown in fig. 3, i.e. electron vacuum polarization insertions into a
muon vertex. Specific examples are exhibited in fig. 1. These contributions are
generated by replacing all internal photon lines in a renormalized muon vertex by
dressed renormalized photon propagators of the form

g .4 '
—i q_;“’ - _iiz" dg (qzlmz, @) +q,q, terms. (3.1

The muon vertex may consist of a single graph, a subset of graphs or all graphs in a
given order. It is understood however, that we are only considering sets of muon
vertices that are gauge invariant under internal gauge transformations™. The func-
tion dR(qz/mZ', a) represents all electron loop corrections to the photon propagator.
The muon vertex thus obtained, and hence the anomaly, a, becomes a functional
of d of the form **

§ §

M,y only —— -+ — M,y only e
e e
+ =1 iy only -+

Fig. 3. Class of Feynman graphs contributing to the muon anomaly for which we shall write
a Callan-Symanzik equation.

* In this connection we would like to point out that it is commonly believed that such
sets of muon vertices are also infrared convergent. The authors do not know, however, of a
formal proof of this statement,

** Let us point out that the substitution (3.1) should also be carried out in the renormalization
counterterms necessary to renormalize the original muon vertex. Thereby they become
functionals of dg as well as functions of a cut-off, A. When the (substituted) counterterms
are added to the (substituted) unrenormalized contributions that also depend on A, the
cut-off dependence must cancel and we arrive at the finite functional in eq. (3.2).
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a=p(m},(adg(q*Im3, &)} 2), (3.2)

where we have used curly brackets with a subscript g2 to indicate that ¢ is a func-
tion of the whole expression within the brackets for all values of g2. We have also
explicitly indicated the dependence on the muon mass, m s the electron mass, m,,
and the coupling constant, a. The functional ¢ does not itself have any dependence
on a, because each propagator is associated with a factor e, at each end, which is
taken care of by the factor a inside the brackets. If we put dg = 1 in eq. (3.2) it re-
duces to the anomaly due to the original renormalized muon vertex. We are inte-
rested in the structural properties of this functional in the limit me/mu - 0.

The photon propagator a dy satisfies a Callan-Symanzik equation of the form
[20]

) [me aa +B(a) a——:l adR(qz/me, a)=a A(qz/me , a), (3.3)

where A is a function that vanishes for g2 - —ee or, equivalently, for m, = 0.

This equation is obtained by studying the photon propagator’s response to small
variations in the physical (renormalized) mass, m, while keeping the unrenorma-
lized coupling constant, a, fixed [20]. Such a variation (the right hand side) may
be expressed in terms of a variation of the physical mass, while keeping the physical
coupling, a, fixed, plus the remaining variation of the physical coupling (the left
hand side). On the other hand « dR(q2/m2, a) is the invariant charge which for
fixed ay only depends on m via the unrenormalized mass . As m, only occurs
in the denominator of the free electron propagator a variation must (by power
counting) necessarily improve the asymptotic behaviour compared to the asympto-
tic behaviour of a d, which is logarithmic. Hence the right hand side must order
by order vanish for g2 - — oo, The function () is finite in each order of pertur-
bation theory and known explicitly up to sixth order [21],

ﬁ(a)=§%— ;—(%)2—%(%)3+... : (3.4

If we apply the operator m, 9/9m, +Bad/da to the anomaly defined in eq.(3.2) it
will only act at the a di part and we find

m
(me% +B(a)a£—)a(m_“_,a)=c1>(m5,adR,aA), (3.5)
[+] e

where @ is a new functional, proportional to « A. (It is simply the integral over the
functional derivative of ¢ with respect to a dg, multiplied by aA.) Therefore the
contribution to the muon anomaly from electron vacuum polarization insertions
obeys a Callan-Symanzik type equation. The predictive power of eq. (3.5) rests on
the fact that the ratio of the physical masses m /Mg is large, and, therefore, to a
good approximation, the study of this equatlon in the asymptotic regime m /m -
0 will suffice for our purposes.
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The crucial step towards simplicity is the fact that the vanishing of A in the
limit m, > O entails the vanishing of the right hand side of eq. (3.5). The proof of
this, and in particular the estimate of how fast the r.h.s. vanishes, requires a rather
technical analysis and we therefore relegate it to appendix A. Let us then consider
eq. (3.5) in the asymptotic region m /m - 0. The asymptotic part of the anomaly,

a=(m /me, @), is defined in the followmg way. In each order of perturbation theory
we let m /m — oo and drop all terms that vanish in this limit. Divergent and con-
stant terms are kept. As we shall see below the divergent terms are at most lo-
garithmic so that we have

m m m m,
a” (—— a) B(a)+C(a)log——“+D(a) log J +E(@log® -2 +...,
me me me me (3.6)

where B(a), C(«), . . . are power series in a. The asymptotic part of the anomaly
obeys a homogeneous Callan-Symanzik equation

(me 5?n—e+ﬁ(a)aa—i)a°° (n%‘ ,a) =0, (.7)

The solution to this equation is

m m (0)cd/0
a“(__u,a)=( “)"" “B(e)
I’f'le m

[

jZ‘, ¢ L (e d)" 5@, (3.8)

where B(c) in principle is arbitrary, but by comparison with eq. (3.6) is seen to be
simply the constant term in the asymptotic anomaly, i.e.,

m
o= (1o o
€ mp =m,
From eq. (3.7) it is clear that only logarithms may occur in the asymptotic anomaly
as demonstrated explicitly by eq. (3.8). It is also clear that the power of the loga-
rithm is always smaller than that of a, because both § and B vanish for a = 0. We
can then write eq. (3.6) in a more explicit fashion

a” ('—n—” ,a)=g {8}
m T

€
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a\ 3 m“ 2 mu
+(7r) {B3+C3log—r716—+D3log —

€

+ (A |, +c, 10 T£+D102T£+Elo3ﬁi+ (3.10)
(TT) 4 4 8 me 4 g me 4 g mc ey .
where we have expanded the functions in powers of a/n. By comparison with eq.
(2.10) we see that the expressions in the curly brackets are contributions to the
coefficients A% . Our aim is to spell out the regularities among the coefficients

B,C, D, E, ...and to show that they may be easily obtained from a knowledge of
B(a) and B(a).

Once B(«) and B(a) are known, the complete asymptotic part of the anomaly
is determined. In perturbation theory, knowledge of B() and () up to a given
order in @, say n, entails the knowledge of the coefficients of the n leading lo-
garithms in any higher order. This is entirely similar to the renormalization group
predictions in the case of asymptotic vacuum polarization. Comparing eqs. (3.6)
and (3.8) we find

C(@) = B(e) @ B(o), (3.11)
D@ =} (8@ a ) B =] 6@ s ), (3.12)
E(a)= §1,— (B(a) o a%)B B(a) = ;— B(a) %D(a). (3.13)

In perturbation theory we have explicitly (denothing the coefficients of a/n in f(c)
(eq. (3.4)) by B,)) up to eigth-order

C, =8,B,, (3.14)
Cy =B,B, +26,B,, (3.15)
C,=8,B, +28,B, +3p,B,, (3.16)
D, =8,C,, (3.17)
D,=8,C,+3 8, Cy, (3.18)
E,=8,D;. (3.19)

The §'s are all known analytically [21]. Of the B's, B, and B, are known analytically
[27--29]:

B =13, (3.20)
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e 25
By=A5—3¢

97 .t 1, 3 -

=ttty 3 T log2+ 7 §(3)=-1.0229..., (3.21)

while By is known partly analytically partly numerically. Using the tables in ref, [6]
we find the numerical result [3, 16, 30, 35].

By =AS+1.94(2) =3.23(6), (3.22)

where in the last line we have used eq. (2.6). All the coefficients except C, may
now be evaluated analytically

¢, =1, (3.23)
31 .7 2 , -

Cy=5r+g——3m log2+§(3)=—11139..., (3.29)

C, =5.02(12), (3.25)

2

Dy=%, (3.26)
71 2, -

Dy=ggto——5m log2+{(3).=-09472.., (3.27)

B =4 (3.28)

Inserting the values of the coefficients given above into (3.10) we finally find

m 2
a (—“ a) =0.5%+0.7658 ("i)
m m m

<

+3.61(6) (%)3 +(B, +22.3(6)) (%)4 ... (3.29)

As expected, we see that the eighth-order mass dependent terms from the class of
Feynman graphs shown in fig. 3 are completely determined,

m m

m
C, log m—: +D, log? m—:+E4 log? ;1-‘: =223 (6). (3.30)

An amusing numerological feature of this calculation is the strong cancellation
among the two leading logarithms
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3

m
2_#
me

3 B _
D, log +E, log ’Z =—447, (3.31)
This is somewhat reminiscent of a similar cancellation among the leading logarithms
in sixth-order

| 3

£ =0.378, (3.32)

mny, 2
C; log —”TC— +Dj log .

3

which was first observed by Kinoshita [3]. We find these cancellations sufficiently
intriguing to warrant a detailed analysis of leading powers of log m “/me in pertur-
bation theory. This is the motivation for the appendix B, where the sum of the
first three leading powers of log m ”/me to all orders in perturbation theory is
carried out,

The exact value of the constant B, remains unknown. It contributes to the
eighth-order mass independent terms of the anomaly and, presumably, to the
presently needed accuracy, it can be disregarded. As we shall see in the next section
it is possible, however, from a detailed analysis of certain classes of Feynman
graphs, to get their corresponding contribution to B, without much computational
effort,

4. Electron vacuum polarization insertions into the lowest order muon vertex

The purpose of this and the next section is to extract the maximal information
about the eighth-order muon anomaly obtainable from our knowledge of the
asymptotic vacuum polarization and the lower order anomalies. The method we
have used in the previous section is such that, because of the lumping together of
all diagrams at a given order, one loses some information about individual dia-
grams. In this and the next section we want to recover the lost information,
whenever possible. As we shall see, we shall be able to say more about certain types of
diagrams, notably the electron vacuum polarization insertions into the lowest
order muon vertex (see fig. 4) which are the subject of the present section.

Fig. 4. Electron vacuum polarization insertion into the lowest muon vertex.
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4.1, The asymptotic part of the photon propagator

The general expression for the renormalized photon propagator in quantum elec-
trodynamics is

dp(q*/m? , )

q2

—iDR’ (q)=—ig"” +qHq” terms. “4.1)
As before, we shall disregard any contribution due to muon loops, and furthermore,
we do not specify the precise nature of the longitudinal terms. Since the quantities
we calculate are gauge invariant these terms will have no influence on the final re-
sult and we may consistently use only the g,,,, term in eq. (4.1).

It is convenient to express the function dg in terms of the proper photon self-
energy function g,

1
do (g% Im?, 0) = : (4.2)
T e np(e?m? @)
where
i (q) = - i(g"q* — q*q") 1z (@?) (4.3)

is the sum of all proper renormalized self-energy diagrams contributing to the
photon propagator (see fig. 5).

The asymptotie part of the photon’s self-energy, R(c[2/m , @), for large space-
like momenta is defined in exactly the same manner as the asymptotic part of
the muon anomaly in the previous section. In each order of perturbation theory
one lets —q2/m — oo and drops all terms that vanish in this limit. Divergent and
constant terms are kept. Since the right hand side of eq. (3.3) vanishes for g2 -
—oo the asymptotic propagator satisfies the Callan-Symanzik equation [20]

i";‘ll(v(q) =Ml©vv+
M.<§}w+ w®~+ W®w+

+. ..
Fig. 5. The renormalized proper self-energy tensor iwi‘{" @.
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-t < = 44
[me o B(o) o aa] odp (g7 /m%, @) = 0, (4.9
which, in complete analogy with the discussion in the previous section, shows that*

dy(q?/m?, @) =1 +q(a) + p(c) log (—q%m?)

+7(0) log? (—q*/m?) + s(@) log® (~g*ImHy + ..., (4.5)
where g(a), p(0), . . . are power series in «, of the form
2 o\ 3
1+q(a)=1+f11%+q2 (f?l) t4; (g—) o (4.6)
a a\ 2 )3

p(a) = Py tP2 (77 Pyl teees (4.7

_ a) 2 a) 3
(@)= r (,;) + '3(;) to 48)

o 3
(@) = 5 (;) fo (4.9

They are related to each other via the same kind of expressions as (3.11) — (3.13).
This is, however, not very convenient from the point of view of calculating indivi-
dual contributions to the anomaly. It is better then to express g, p, . . . in terms of
the coefficients of 7y defined by

n;(qz/mg, Q) =10‘T {”1 +b, log(—q2/m2)} + (%)2 [“2 +b, log (—qz/mg)}

* (%)3 [a3 +bylog (—Clz/mg) te, log? (—qz/mg )} ... . (4.10)

The structure of this equation follows from the solution of the Callan-Symanzik
equation for 1 + mg which may easily be obtained from eq. (4.4), i.e.,

1+ 75 (q2/m?, 0) = (=q?m2)y: #()(@d/3a=1) (] 4 4(qy), (4.11)

where a(a) = a; a/m +a,(a/m)? + .. is the value of 7y for g%=- mz . Then we
find

b(e) = 1 B(@) (a% - 1) (1 +a(e)), (4.12)
e(@) = 5 B(@) (a g_a— 1) b), ... (4.13)

* The reader should be warned that here we deviate from Adler’s notation, ref. [20]. This is to
simplify notation in later calculations.
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These equations contain all the renormalization group contraints, *. In particular,
it follows from them that there is no log? (—qzlmg) term in fourth-order (and in
general, no log? (—q2/m§) term in order o).

The known values of the coefficients in eq. (4.10) up to sixth order are:

by =-3, (4.19)
a, =3, (4.15)
by=—3,  (Jost-Luttinger, ref. [23]), (4.16)

ay =35 — t(3), (Hagen-Samuel, ref. [24], Lautrup-de Rafael ref. [16]), (4.17)
c3=—%b1b2=—%4, (4.18)

by = 3¢ — 5 £(3), Rosner ref. [25], de Rafael-Rosner. ref. [21]). (4.19)

The coefficient a3 remains unknown.
From eq. (4.2) we can easily obtain the relationship between the coefficients
q, p, . .. and the coefficients g, b, . . . Up to sixth-order they are

q,=—a,, (4.20)
q,=—ayt a%, (4.21)
q3=—ay +2a,a, - ai, (4.22)
py=-by, (4.23)
Py=—b, + 4, (4.24)
py=—by +  2(a;b,tayh)-3a%b,, (4.25)
7y = b? , (4.26)
ry=3bb, +  2bb, —3a,b%, (4.27)
53 = - bl (4.28)

We have tabulated the relationship among coefficients in such a way that it is easy
to read off which contributions come from the proper graphs; which from the im-
proper graphs consisting of two proper parts; and which from the improper graphs
consisting of three proper graphs. This is explicitly illustrated in fig. 6.

* For a discussion of these constraints, in connection with the Callan-Symanzik equation see,
ref, [21].
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a)

w2, 2 -
dR(q fm, @) ANRAAAAAIIS + ~\O~‘ +

a
e (—al -by L

b) c)

a\2 ~ fa)2 2 2.2
(ﬂ) (-a,-b, L) (W) (a1 +2ab L +b "L )

d) e)

. @ . . ~.@w

1

ay3
(ﬁ) (-a -b3 L+y

2
4 byb, L )

£)

a3 2
(") 2(aja, + (apb, +byay) L+ bby L)

g)

o OO -

03 (. 3 4.2 B 2.2
H (-a’-3a% L -3ap? L

3.3
1 —blL)

Fig. 6. Classes of Feynman diagrams which up to sixth order contribute to the asymptotic pho-
ton-propagator dg (q2 /m?,a). Their corresponding contribution in terms of coefficients a’s,
b’sand L =log (—q2/mé) are depicted at the bottom of each class of diagrams. Dashes after a
diagram indicate permutations of internal photon lines.

4.2, Vacuum polarizationiinsertions into the lowest order vertex

We now turn to the diagrams depicted in fig. 4 and write a subtracted dispersion
relation for the contribution to dg(¢2/m?2) in the form

(4.29)

oo 1 )
dR(q2/m§) —1 ) f FPR— Im [dp (t/m]) ~ 1]
_—_qT——— t )
4m‘23 t-q

It is therefore clear that the contribution to the muon anomaly from such diagrams,
which we shall call a¢y), is of the form

oo

dt 1
‘], + K/m?) = Im (1 - dg(e/m2)), (4.30)
)
e
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where K (t/mﬁ) is the muon anomaly due to exchange of a heavy photon with mass
squared 7 in the lowest order diagram™. A convenient parametric form of this func-
tion is,

1

K(t/mz) _ ;)T_z f x%(1-x)

=) 4.31
0 xZ +(1-x) t/mz 30

Introducing this expression in eq. (4.30) we find using the dispersion relation (4.29),

_f dx(l—x)[ ( -x? %2‘—)—1]. (4.32)

1-x

This is an exact expression which in principle can be used to calculate the exact mass
dependence of the contributions to the muon anomaly from the diagrams under
consideration**, Here, we are interested in the asymptotic contribution to the ano-
maly, for which we simply have

a3 (m ; )‘“ fdx(l"")[ (]—j; n:—‘z‘,a)—l]. (4.33)

As can be seen from eq. (4.32) non-asymptotic contributions from the photon pro-
pagator are only of importance in the interval 0 <x < m /m” and therefore will
be at most of order O (m, /m ). (This point is discussed more fully in appendix A.)

We are now in the posmon to calculate a, @ (m /me, a) explicitly. Inserting the
expression (4.5) for the asymptotic photon propagator in eq. (4.33); and defining
the integrals

1

= f dx(l—x) logN % , (4.34)

0

we find, up to eighth order,

o0 mu 44 3
a3 (r_n—e_’ oz) == 81, s(a) log

e
+ & [121, s(a) + 4 I, r(c)] log?
T 1 0 8
* The reader interested in a more detailed account can consult e.g. ref. [16].

** In fact, an exact calculation of the 4t order diagram in fig. 7a has been done by Erikson
and Liu, ref. [26].
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m
« u
+ 17[612 s(a) + 41, r(a) + 2[0 p(0)] log ”Te

+ f‘? [y s(@) +1,r(@) +I, p(e) + I, q(e)]. (4.35)

From this result we can clearly read-off the corresponding contributions to the co-
efficients B(a), C(w), . . . defined in eq. (3.6). The interesting thing is that now we
have explicit information about the mass-independent coefficient B(a)! The inte-
grals Iy are all calculable. We find for the first four values of ¥

I, = 1 (4.36)
I =-3, (4.37)
I=% +3n*=6540...., (4.38)
I=-% —3n*—61(3)=—4276.... (4.39)

In order to find the explicit contribution to agy) (m,,/m,, &) from any of the groups
of Feynman diagrams shown in fig. 7 we have only to insert the corresponding
values for the coefficients g(@), p(w), . . . in eq. (4.35). These values can be read-off
from the corresponding vacuum polarization diagrams in fig. 6. We then obtain the
following results:

Fourth-order
There is only one mass dependent diagram at fourth-order (fig. 7a). We find

_ fa\2 Mal_ f{e\2] 25 1, ™,
32a) = (;r—) {—all —b I, —2b1,log ﬁ;}— (1?) {_§6—+§103m—e

=1.083 (;) d (4.40)

which is the well known result first obtained by Suura and Wichmann [27] and
Peterman [28]*.

Sixth-Order

There are two types of diagrams, figs. 7b, 7c which correspond respectively to
the proper and improper fourth-order vacuum polarization insertions. For the
proper type contribution we have

* See also the previous footnote,
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B-b
5>

+A+m+
e e e e e u

g)
Fig. 7. Vacuum polarization insertions into the lowest order muon vertex: (a) fourth-order con-
tribution; (b) and (c) sixth-order contribution; (d), (e), (f) and (g) eighth-order contribution.

_ (%) 3 "
8on) = (;) —a,ly — byl —2b,1,log m—e

- (%)3 [_122+;—§‘(3)+‘1T10g’—n’;‘1] =1.517 (%) } (4.41)

[

which is the result first obtained by Lautrup and de Rafael [16] using dispersion
methods only..
For the improper type contribution we have

_ (Y3 ]2 2
800y = (1?) {al 10+2(11b1+b1 12

3

2 My a2 2 M
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Cfa) 3 317 2% 25 m, 2., M
'(17) {n—ﬂﬁ‘ﬁ“’grf**“’g m

3
=2.724 (%) , (4.42)
which is the result first obtained by Kinoshita [3].
Eighth-order

In eighth-order there are two types of improper vacuum polarization insertions,
which give contributions as indicated in figs. 7f and 7g, and two types of proper in-
sertions: one-fermion loop type, which give contributions as shown in fig. 7d, and
two-fermion loop type, which give contributions as shown in fig. 7e.

There are altogether 18 proper diagrams (15 of the one-loop type, fig. 7d; 3 of the
two-loop type, fig. 7¢). Their total contribution to the muon anomaly is

- ¢ 4 m#
“edo” (1?) {—”3[0”1’3[1 —e3ly =2yl + 4y 1) log -

[

m
— 4,0, log? m“ } . (4.43)
€

Everything except a3 is known here. Evaluating what we can, we get

{4 1 287 w2 5 67 1 m,
a0~ (3) 2% matr O (-5 +510) log 7=
1 2 Mul _ (a4 .
+ﬁlog We-} “(_;) {—2a;+1.168} . (4.44)

It would be interesting to know a5 (see eq. (4.10)), which presumably contains
higher transcendentals.

There are 6 diagrams of the improper class shown in fig. 7f. their total contribu-
tion to the muon anomaly is

_ e\ 4
qap = (;) {2{11 ayIy+2(a,by +biay) 1) +2b, byl
" 2 My

+ [4(a;by + biay) [+ 8bb,I ] log m—e+8b1b210 log ’"_J
_{a 4 1509 1r2 25 5 2 mu 1 5 mu
_(—) {432 +T§~ﬁ—§(3)+[_z+§§(3)] log —= + > log” ——

U
€ me

=7.140 (%‘) ‘. (4.45)
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We are left with the triple-bubble graph, fig. 7g, which is the only one contri-
buting a log3 mu/me term to the anomaly, for which we find

Y LA Yl 2 27 33
Y29~ (17) {_“110_3"11’1[1 = 3a,b11, by 1y
iy

m
2 2 2 M
+(—6a1 bllo — l2a1b I, — 6b112)log r_n:

m m
2 3 1ol M 3 3 _H
+(—12a,b7 1, — 12b3 1,)log m_e_SbIIO log m—J

]
a\4 8609 25 5.2 317 |, 2n° m,
(1?) {_5832 ez " gt (162 7 ) log 77

2 m 4 3 mu
57 log m—e+§—7—log P (4.46)

4
7.197 (‘i) .
T

We see that we have been able to extract the full contribution to the asymptotic
eighth-order muon anomaly from all the improper sixth-order electron vacuum polari-
zation corrections to the second-order muon vertex.

5. Single electron vacuum polarization insertions into arbitrary muon-vertices

We now turn to the more general case of vacuum polarization insertions into a
single photon line in an arbitrary muon vertex. This is illustrated in fig. 8a. By simi-
lar argument as above we obtain again eq. (4.30) where K(?) is the anomaly due to
muon diagrams with one heavy photon of mass v/7, (fig. 8b). From inspection of
the diagrams one sees that K(?) is analytic in ¢ everywhere except on the negative
real axis where it must have a cut. Furthermore since K (#) = 0 for ¢ > o, we may
write an unsubtracted dispersion relation for it *,

0
k(= [ dt't,—_l—t—:?ImK(t'). (5.1)

* Notice that forz > 0
K@ =1lm Fy@q% 0;
q*»—0

and F, (qz,t) in pure Q.E.D., is real for q2 < 0 because of the absence of anomalous thresholds.
The fact that K () — 0 for t —os"is equivalent to the fact that the anomaly is independent of a
photon propagator cut-off.
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p— .y only — é — W,y only s
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, ’
®, £
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a) b)
Fig. 8. (a) General structure of diagrams with electron vacuum polarization insertions in only one
photon line; (b) the corresponding diagrams with a massive photon contributing to the function
K(@).

It is useful to introduce the notation

L mk@=—k (—t/mﬁ) (%) R <o) (5.2)

where we have factorized the quantity (a/7)? which appears in 2pth order. Then, the
analogue of (4.33) is

RN PR R

Terms neglected m using the asymptotic propagator arise from the region below and
around y =m /m From the fact that K (0) is finite we deduce that k () vanishes for
y—=0;and therefore the neglected terms vamish in the limit m,/m, > 0 (see appen-
dix A for more details.

Introducing the explicit form of the asymptotic photon propagator into eq. (5.3)
we obtain again an expression for the anomaly of the type written in eq, (4.35) ex-
cept that now, the integrals Iy are

iv=] Y ko)ieg" ». (5.4)
0

Except for N = 0 these integrals are not in general known analytically. For/, o we
have

®) 0= Of 2 k0) =K ), (5.5)

which in 2pth order is just p times the anomaly obtained from the corresponding dia-
grams without electron insertions. The reason for the factor p, is the p different pho-
tons into which we may insert the electron loops. We shall next discuss various ap-
plications of these formulas.
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AAA A

3% 3
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Fig. 9. Fourth-order muon vertices.

3.1, Proper fourth-order electron vacuum polarization insertions into the fourth-
order muon vertices

There are:altogether seven muon vertices in fourth-order (see fig. 9). Each muon
vertex has two internal photon propagators i.e., two different ways to insert the
three independent proper fourth-order electron vacuum polarization corrections.
Altogether, this makes a total of 42 eighth-order Feynman diagrams (see fig. 10).
For these diagrams we are able to extract the contribution to the asymptotic muon
anomaly, mass independent terms inctuded. Indeed, let us call aaﬁ)(mﬂ/me, a) their
corresponding contribution. From eq. (5.3) we obtain

oo (mli _ (@ 4 mli
i (o) - (;) el byl 251y log (5.6)
The integral 7 is known. It is twice the value of the fourth-order anomalous magne-
tic moment of the muon from the diagrams in fig. 9 i.e. *,

{197 7?1, 3
=2 (m—+17—57r log2+Z§’(3)). (5.7)

The integral I, is not known a priori. There is however one extra piece of informa-
tion we have not used as yet, i.e., the contribution to the muon anomaly from second
order electron vacuum polarization insertions into the fourth-order muon vertices.
These sixth-order contributions are known **, partly analytically, partly numerically.
If we call aa,2)(m u/Me, @) their corresponding contribution to the anomaly, we have
according to eq. (5.3),

oo mﬂ 44 3 m“
) _‘me ,0‘) = P —0110 —blIl — 2b1[0 logm—e R (5.8)

* This is the famous analytic calcualtion of Peterman, ref. [28] and Sommerfield, ref, [29].
** For a detailed review of these calculations see ref. [6].
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a) b)

c) d)
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" e
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e
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Fig. 10. Proper fourth-order electron vacuum polarization insertions into the fourth-order muon
vertices.

where [, and 7; are the same integrals as in eq. (5.6). The simitar structure of egs.
(5.6) and (5.8) is due to the fact that second and fourth-order proper vacuum polari-

zation insertions are both linear in log (—qz/mg) (see eq. (4.10)). The result of a direct
calculation®, of aa »m,/mg, a)is

—61 7 (11_9_4_

2) "
— = 7°) log —
} (m“ ) (a)3 162 27 27 79 m,
a —,af= {—-
@2) ’
e " +0.04£0.05 +( 3y 5_n2-31r210g 2+ g(s)) log )
e 12 9" 73 m

e
(5.9)
The first line above corresponds to the contribution from the diagrams in fig. 11,
which is known analytically [30], the second line to the other contributions** [35].
* See footnote™* of previous page.

** There are other diagrams for which the constant terms have also been calculated analytically
recently, see refs. {31, 32). They do not however, constitute a gauge invariant subset.
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e W u

Fig. 11, The sixth-order diagrams for whicht he constant term in eq. (5.8) is known analytically.
See ref. [30].

From the comparison between egs. (5.8) and (5.9) we can get the values for the
integrals /) and 7, corresponding to the analytically known part and the numerically
known part separately. Upon substitution in eq. (5.6) we finally obtain

473 119 2 119 12) my
L A (C RERCC T LA P

€

- (”& a) _ (01)4
4,4) ’ m
e " 4 0.96(5)+ (—31+ 3 log?+d §(3)) log -

e

(5.10)

where the first line corresponds to the contribution from the diagrams in fig. 10g and
the second line to the total contribution from the other diagrams (figs. 10a-f). Nu-
merically, we have

aam (:—: , a) = (%‘_) 4 {—7.554+ —0.87 (5)} =-8.43(5) (%)4' (5.11)

6. Summary of results and conclusions

We have shown that the electron vacuum polarization contributions to the muon
anomaly satisfy a Callan-Symanzik equation, which allows us to predict the mass
dependent terms from all such diagrams in eight-order as well as verifying lower
order contributions. The mass independent terms could not be determined from the
Callan-Symanzik equation alone, The input to the eighth-order calculation was the
mass independent terms in the muon anomaly (known up to sixth-order) together
with the 8-function occurring in the Callan-Symanzik equation for the photon propa-
gator (also known up to sixth-order). The calculation itself was reduced to simple
algebra.

Using a slightly more detailed analysis we were able to calculate analytically the
mass independent terms from the improper sixth-order electron vacuum polarization
insertions into the second order vertex (the 7 diagrams in fig. 7f, g). We were also
able to calculate the complete contribution from the proper sixth-order insertions
(the 18 diagrams in fig. 7d, €) in terms of one unknown parameter, the constant
term in the asymptotic vacuum polarization in sixth-order, Finally we were able to
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€ 0o

Fig. 12, Mixed double and triple bubble diagrams that may be evaluated at the expense of one
(rather difficult) integral.

W

Fig. 13. A special kind of mixed vacuum polarization insertions.

e) £)
Fig. 14. Diagrams with photon-photon scattering parts.
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determine numerically the constant term from the proper fourth-order electron va-
cuum polarization insertions into fourth-order vertices (the 42 diagrams in fig. 10).
Thus, for 49 eighth-order diagrams the complete contribution is known. Only one
diagram, the triple bubble in fig. 7g, required the evaluation of an unknown quanti-
ty, namely the integral in eq. (4.39). It is clear that at the expense of one integra-
tion (analytic or numeric) one may also use the techniques of sect. 5 to evaluate
the mass independent terms from the 12 mixed double and triple bubble diagrams
indicated in fig. 12.

There are altogether 1360 diagrams contributing to the eight-order muon anoma-
ly. Of these, 891 only involve muons and are therefore identical to the corres
sponding electron contribution A3 about which nothing is known. Of the other
469 diagrams, we have calculated the mass dependent terms of all the electron va-
cuum polarization insertions (i.e., 304 diagrams)*. For 49 of these diagrams (the
7 diagrams in fig. 7f, g and the 42 diagrams in fig. 10) we have evaluated the con-
stant terms as well. The remaining 165 diagrams are either a special kind of mixed
vacuum polarization (fig. 13) or contain photon-photon scattering subgraphs (fig.
14) **_ 1t is known [9] that the diagrams in fig. 14a could give a very large contii-
bution, of the order of 180 (¢/m)4,***, The diagrams in fig. 14b, ¢, d, are expected
to be less important because they do not have a logarithm-generating electron va-
cuum polarization insertion. For the diagrams in fig. 14e, f, an application of Kino-
shita’s theorem on mass singularities [22, 33] indicates that they have no logarith-
mic dependence on the mass ratio. It is not clear whether the diagrams in fig. 13,
have a logarithmic contribution.

The result of the contribution to the muon anoemaly from the mass dependent
terms of all the eighth-order diagrams that are electron vacuum pclarization cor-
rections, is

* This is the number of topologically distinct proper diagrams with non-zero contribution.
Writing

304=1X72X3+(B3+1)XTX2+(AXDXTX1+18+631)X1X1

we have first the contribution from a second order electron vacuum polarization insertions
(1 diagram) into the sixth order muon vertex (72 diagrams). Each insertion can be done in
3 different ways. The next term is the contribution from fourth order (proper + improper)
vacuum polarization in the fourth order vertex. Then follows the contribution from two
second order insertions into two different lines of a fourth order vertex, and finally the
sixth order insertion into the second order vertex.

** The number 165 is given by

165=3+(3+3+8+10) X 6+3 X6,

corresponding to fig. 13 and figs, 14a-f respectively. Fig. 14a for instance is 3 X 6 because
there are 3-ways of inserting the vacuum polarization blob into the 6 sixth order vertex dia-
grams with photon-photon scattering subgraphs. The diagrams in fig. 13 were not included
in the discussion in ref, [9].

*** Barring for possible cancellations between leading logs of the type encountered in the elec-
tron vacuum polarization insertions.
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O£4 M 71 2
(%) { log’ e*[ﬁ*r‘

2
3
m“ o\ 4
+5.02(12) log —=( =22.3(6) (;) .

€

m? log2+ §(3)i| log2

€

Note added in proof

M. Samuel (Oklahoma State University preprint, November 1973) has recently in-
dependently reevaluated the 8th order anomaly using Kinoshita’s method [3]. His
results agree with ours where comparison is possible.

Appendix A. Proof of the Callan-Symanzik equation for the asymptotic anomaly

In this appendix we shall be concerned with the detailed derivation of the asymp-
totic Callan-Symanzik equation (3.7) from the non-asymptotic equation (3.5).
From Weinberg’s gower countmg theorem [34] it follows that for g2 - —, the
function A(q2/m vanishes as m /q2 times possible powers of log q2/m One
would then naively expect that the r.h.s. of eq. (3.5) vanishes as me/m2 times powers
of log m /m when m, > 0: That this is not the case is borne out by an explicit
calculation of the fourth-order contribution to the muon anomaly from the Feyn-
man diagram in fig. 7a. It is found [26] that

N2 1 My 25 a2 M
a(7a)— (7';) (§ logr—n—;—% +4—r71‘—‘+.} N (Al)

Fig. 15. Ilustration of the type of diagrams that contribute to the evaluation of the right hand
side of the Callan-Symanzik equation,
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Fig. 16, Diagrams for K (t/mz, me/ m“).

ie., the non-asymptotic terms are linear in the mass ratio and not quadratic. Hence,
our naive expectations are wrong and a more careful analysis of the transition from
eq. (3.5) to eq. (3.7) is required.

The right hand side A(g 2/me, a) of the Callan-Symanzik equatlon for the photon
propagator satisfies an unsubtracted dispersion relation in q?

A(g¥mD) = f YLy agymd). (A2)
q

This follows from eq. (4.29) by applying the Callan-Symanzik operator to both
sides and using that for g2 > —o° we know that A vanishes. Let us denote the right

hand side of eq. (3.5) by R(m,/m ,)- Using the dispersion relation above for A we
see that we may write

SNERIE

e t me) 1 2
o my “

where K (t/m‘1 m /m ) is the anomalous magnetic moment from the diagrams where
all photon propagators but one have been substituted acccording to (3.1) and the ex-
ceptional propagator has been given a photon mass /¢. This is illustrated with an
example in fig. 15. Scaling the ¢ variable we may transfer all the dependence on

m, to the anomaly

R (%)=fm & Limaw {K( ;f) —K(xgg,r;i)}. (A4)

u u

Since =1 Im A(x) vanishes for x - o as 1/x (apart from logarithms) the mtegral is
dominated by-the small x behaviour 6f the integrand, i.e. by the way K (t/m me/
m ) approaches K(0, m¢/m,,) for t < m“

The vertex function giving rise to K (t/m me/m ) (fig. 16a) may be expressed
in terms of the double Compton amplitude C uW(k Py, P1) (fig. 16b)

. d4k Cy(k: p2’p1)
i .

V(p s P ,t)=_
w20 ot K-t

(A.5)
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Then, the difference K(0, m¢/m,) — K(t/mi, me/mp) is given by

d4k C”(k, p29p1)
et 2K~

The factor t = x mZ/m2 in front of this integral reflects our naive expectation that
R vanishes as mglmz. This however can be masked by the possibility that the inte-
gral over k may diverge. Our aim is to estimate how badly it can diverge. The diver-
gence is of the infrared type and we may use the usual power counting methods
for estimating its strength. Thus, of the three types of diagrams shown in fig. 17 the
one where the #-photon is attached to both'the external legs, (¢c), is the most diver-
gent; the one where only one end is attached to an external leg, (b), is less divergent
while the one where the ¢-photon is attached to two internal vertices, (a), is the
least divergent. Since the Fermion propagators (p + K2 _m2=f2+ 2p k are
linear in & for k = O we expect only type (c) to give a divergent contribution of
the strength d4k/k* ~ log ¢ to the integral in eq. (A.5), while (2) and (b) are con-
vergent. On the other hand we know that the anomalous magnetic moment ex-
tracted from eq. (A.5) by means of a suitable projection operator is convergent
for ¢ = 0, so the apparent logarithmic divergence of diagram (c) must some-
how be cancelled in the anomaly. (We shall see in a moment that the terms respon-
sible for this cancellation are the renormalization counterterms to the diagrams in
fig. 17a). Turning now to the difference in eq. (A.6), we conclude that the leading
divergence which is naively quadratic must also cancel here. Thus instead of be-
having like d4k/k6 ~ 1/t the divergent contribution to the anomaly of (A.6) from
diagram (c) must behave like d*k/k> ~ 1//7 or better. Hence

m m
K (0,%)-1((%,{—%%, (A7)
u w u @

V(03010 =V (D)0, 0= n'f (A.6)

apart from possible logarithmic factors. This implies via (A.4) that the leading be-
haviour of the r.h.s. in the Callan-Symanzik equation is of the form

m m m
R (;{"'—) =We F (log ;}) . (A.8)
b u e

The logarithms arise partly from the remaining vacuum polarization insertions and
partly from possible logarithmic enhancements of the infrared behaviour of the
blob insertions in fig. 17b and c.

Finally we shal show explicitly how the infrared divergence of the contribution
to (A.5) from fig. 17¢ is cancelled by renormalisation subtractions, The correspon-
ding vertex amplitude is

d4k 7,,@2"' K+ mu) Wu(Pz"'ks p1+k)(ﬁ1+17, + m“)')'p

, (A9
(2m* (k2 +2p, - k) (K2 +2p; - k) (k* — 1) A

VoD, py) = e?
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Fig. 17. Contributions with different infrared behaviours.

x I(t,o0)

VAR

Fig. 18. Second order correction to the vertex where the external photon is attached, and its
subtraction constant.

where W, is the vertex function of the blob in (fig. 17c). To isolate the infrared
d1vergence we put k = 0 in the numerator and use the Dirac equation to obtain

VD, p)) =W, (00 12, 47), (A.10)
where
4 4p. -
1, ¢ =ie? [LF 71 2p2 -
n* (k2 +2p, - (k* + 2p, - K)(k* — 1)
1 1 2 1.2
x(m, —3q°)
‘,—x,— f f & 5— e ) (A.11)
o o  x(m—y(I-y)+(Q-x)

We clearly see the logarithmic divergence,

[

t=0. (A.12)

><|§“
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Because we work with a renormalized theory we must subtract the unrenormalized
amplitudes. Although the unrenormalized diagrams of type (a) and (b) are infrared
finite for ¢ = O this is not the case for the corresponding subtraction constants. In
fig. 18-a diagram of this type is shown. The infrared part of the subtraction con-
stant is just the integral in (A.11) at g2 = 0, such that we have the complete in-
frared contribution to ¥,

V(P py) = W, (py, p)) (15, ¢%) — I(2, 0)), (A.13)

which vanishes in the static limit, g2 = 0. We remark that the second order sub-
traction constants arising from other integral vertices are exactly cancelled by the
electron propagator subtractions due to Ward’s identity. Subtraction constants for
higher than second order vertex corrections are not divergent for # = 0 in the static
limit.

Appendix B. Summation of leading logarithms

From the structure of the Callan-Symanzik equation it follows that if one knows
B and B to p’th order in a/n then one can calculate the p leading logarithms in all
orders. Writing

a (:—:,a)= 2} (%)p {X logP~1 ( e)+Y logP~ (:e)

p=1
m”

+z, logP~3 (m—) +... } (B.1)
€

We find from the Callan-Symanzik equation (eq. (3.8)) the following recursion for-
mulas for the coefficients X, Y and Z:

X =B X p 1’ (B.2)

Y, = 8, 2 Tz“ Y, + ﬁsz_z, (B.3)

Zp ﬂlp 3 p 1 32 p 2+63 p—3’ (B4)
with the initial conditions

X1=BI; Y2=B7_; Z3=B3. (B.5)
Solving egs. (B.2) — (B.4) we find

= ap—1
Xp = ﬁ’l’ By, (B.6)

p -1
N,=0-082 8,460 (2 Dt s, ®7)
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z,=5 (p-)(p-2) 87> 8,

r=1

+(p—1)(p_2)( E . %)626f_432

k=3

+3 (p - 2(p=3) 8,67 ~* B,
p=1 k=2
— _ 1) 22 o
tp-1)@-2) (“24 ,2?2 W) 836575 B,. (B.9)

We are now able to answer the question whether the two leading logarithms always
tend to cancel each other. Let us define the ratio

-1
Rps%qp—l)%— {ZZ=}2 11?+2i_§_f]. (B.9)
The first numerical values are
R,=-3.07, (B.10)
Ry =-5.01, (B.11)
R, =-6.39. (B.12)

Since log mM/me = 5.33 this means that the two leading logarithms for small p tend
to cancel. For p — = it is, however, evident that the ratio eventually will change
sign and diverge as + p log p. The ratio reaches its minimum R =—9.10forp=
—10 and becomes positive from p = 24 onwards.

The expressions for X, Y and Z look very summable. Instead of attempting a
direct summation it is simpler to solve the Gell-Mann, Low equation for the effec-
tive fine structure constant &(s),

% - & (@), (B.13)
with the boundary value & (¢ = 0) = a. Then it is easily verified that the solution to
the Callan-Symanzik equation (3.8) is

m a 2 3
a” (m—“ a) = B@(O);= 10 mp/mel% +B, (%) +B3(§) +... (B14)

€

Eq. (B.13) may be solved for ¢

dx

t= xf(x)

) (B.15)

Qkﬂfal
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which when expanded in leading powers of « and & becomes
By & (B3 B3\ (a-
t:lil(;__g)_ﬁz_mggwt(_;._%) (E2)+... . (8.16)
1 al g2 g 6 ,

This equation may be solved to higher and higher precision by a set of successive
approximations. Keeping terms of order o® P, o? t*~1 and of tP~2 we find with

z=(ofm) Byt
| ) B2 log(l—z)+(a)2ﬁ% log2(1—z) — log (1—2) — z
- g

i—z u 61 (1__2)2 us 6% (1_2)3
+ (01)26—3— Z L. (B.17)
) B (1-2)3

Inserting this into (B.14) we finally arrive at the summed up expression for the
anomaly

B
a \; M7 12 m

€

B, B B_z log(l—z)}
(1-2) 18, (1-2)?

a\3 [ B3 By 1og(1-2) By .
ol - - A Sl Ry S
' () {(1_2)3 g, (1-2)3 "Og (1-z)3

m

By\2 log?(1-z) — log (1—2) — z o) 4

+B, (= +0 ((_ @), (B.18)
By (1—z)3 m

where z = (/) 8 log m,,/m,. This expression which is correct to three leading

logarithms is of course equivalent to (B.6)—(B.8). The first term has previously been

found by Terazawa [36].
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