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Abstract: We study the decay of a heavy neutral lepton into a neutrino and a photon. In theo-
ries with a charged intermediate vector boson the decay rate is finite (in the one-loop ap-
proximation), provided the anomalous magnetic moment of the vector boson is exactly one,
as it is in unified gauge models of weak and electromagnetic interactions, Our results exhibit
strong model dependence.

1. Introduction

In gauge models of weak and electromagnetic interactions the otherwise bad high-
energy behaviour is cancelled by introducing new fundamental particle exchanges.
Depending on the model the new particles may be various combinations of heavy
vector bosons, heavy leptons, and scalars £. In the Georgi-Glashow model [4] a neu-
tral heavy lepton, E°, is introduced along with a charged heavy lepton E* and a
Higgs scalar. In the second model of Prentki and Zumino [5] the same particles ap-
pear together with a heavy neutral boson, Z°. Other models involving an E° have
been discussed by Bjorken and Liewellyn Smith [3]. The E° has exactly the same
quantum numbers as the electron neutrino, v,, except for the mass, and may thus
appropriately be called an “excited” neutrino. Such particles have been discussed
before the advent of gauge theories [6] $%. We shall attempt in this paper to keep

* This work was initiated at the Workshop on Weak Interactions at Billingehus, Skovde, Swe-
den, July 1973, and is supported in part by the Fonds zur Forderung der wissenschaftlichen
Forschung in Osterreich, Projekt Nr. 1905.

** Supported in part by Kulturamt der Stadt Wien.

¥ For a review of the unified models see for example Lee [1] or Llewellyn Smith [2] or
Pietschmann [19]. Bjorken and Llewellyn Smith [3] give a detailed recipé for the construc-
tion of arbitrary gauge models, and discuss the decays of the new particles.

1% There is even an unconfirmed claim that the excited muon neutrino has been seen [7].
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the discussion general and not specialize to any specific model before it becomes un-
avoidable.

The main decay modes of a neutral excited neutrino may be classified as purely
weak, simulating u-decay

- +

E°C>epe’, (1.1)

E°—>e_v“;1+ , (1.2)
hadronic, simulating inverse m-decay,

E® >e 7", (1.3)

E®>e n 7%, (1.4)
and electromagnetic

E®>v y. (1.5)
We have here only listed what we believe to be the dominant modes. Further hadro-
nic modes may easily be invented, provided the E° mass is sufficiently large. Similar-
ly if other sequential or excited heavy leptons exist with mass below the E® mass
there will be further weak or electromagnetic channels open. In writing down the

decay modes we have left out the ones entirely due to neutral currents different
from the electromagnetic current. Examples of such processes are

E° >y v v, , (1.6)
° _

E°>v Vv, .7

EC—»>v_ n°. (1.8)

We remark that neutral currents responsible for these decays also could give contri-
butions to (1.1).

In this paper we shall be concerned with the radiative decay (1.5). Its amplitude
must be zero in the Born (tree) approximation in all theories with minimal electro-
magnetic couplings to the leptons, i.e. the first contribution to (1.5) must contain
one loop. Bjorken and Llewellyn Smith [3] make the educated guess

I(E° »>v,7)

~6% (1.9)
I'(E® - e_uu;ﬁ) +T(E® > e p,e") m

but warn that it may be wrong by an order of magnitude or more.
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The initial motivation for the present calculation was partly to make yet another
verification of the renormalizability of the gauge models by exposing the cancella-
tion of divergences, and partly to improve the reliability of the value for the branch-
ing ratio (1.9). We shall see, however, that the decay rate is finite in all theories in
which the charged intermediate vector boson, W, has anomalous magnetic moment
exactly equal to 1, i.e. where the g-factor is equal to 2. This is a consequence of the
Yang-Mills structure which is common to all unified gauge models and this calcula-
tion is therefore not very interesting from the point of view of the renormalizability
of these theories. A similar situation occurs in the calculation of the weak contribu-
tion to the g—2 of the muon [8—10] and the quadrupole moment of the W itself
[8, 11]. Both of these quantities are finite in lowest order when gy = 2.

The paper is organized in the following way. In sect. 2 we discuss the kinematics
and write down the general Lagrangian. In sect. 3 we show some details of the cal-
culation and in sect. 4 we discuss the results. Sect. 3 may be skipped without loss
of continuity.

2. Kinematics and the effective Lagrangian

In the following we use the notation indicated in fig. 1, where p is the momen-
tum of the E° of mass M, ¢ the momentum of the neutrino and & the momentum
of the photon *. The most general amplitude compatible with Lorentz invariance,
current conservation and left-handedness of the neutrino is of the form

_ 4 ,
T=u,(1+y5)A Me“zo‘wk”uE . @2.n

Here #,, is the neutrino spinor, 1+y5 secures that it is left-handed ** A is dimen-
sionless and controls the magnitude of the matrix element, e/M is the transition
magneton, e the photon polarization vector, i owk’_’ the magnetic moment current
and uy; the spinor of the excited neutrino.

The unpolarized decay rate is then simply

[(E° - vy) =Malrl? (2.2)
where a = e2/47r = ﬁ is the fine-structure constant.

As mentioned in the introduction the finiteness of the amplitude in lowest order
is not dependent on the peculiarities of gauge theories except for the fact that the
W anomalous magnetic moment is equal to 1. We shall therefore basically use the

* We use the metric with signature (+ ---). Thus the kinematical invariantsarep* k=g k=
raqa= —M
** We use y-matrices satisfying Yot MY = 2gw,, and we take v5 = ivy7;7,73, and
O = t['yu, 7v,]. See Pietschmann [20].
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pM

Fig. 1. Amplitude for the decay E® - vy with momentum assignments indicated.

Lagrangian of old-fashioned (unrenormalizable) intermediate vector boson theory,
which is of the form

L=vigv + E°(iF-M)E® +e(if +te A—m)e — %FWF“"
— W, W¥ + W WH +ieKF*W W,
+gey, (1-y5)v W +h.c.
+ 827, (8y*8AYS)E °WH + h.c. (2.3)

Here v is the neutrino field, £° the excited neutrino field, e the electron field, 4 u

the Maxwell-field with field strengths F, w=0,4,-0,4 uoand Wu the positively charged
intermediate vector boson field with field strengths W, = (3, +ied ) W,~(0,+ied ) W,
We have denoted the electron mass by m and the W-mass by u. This Lagrangian is
constructed from the Lagrangian of the uninteracting fields by coupling the charged
particles minimally to the electromagnetic field and afterwards adding in a non-
minimal anomalous magnetic moment term (last term in second line), an ordinary
weak interaction term (third line) and finally an arbitrary (V,A) coupling between

e, E° and W.

Our Lagrangian is model-independent in the sense that all renormalizable unified
gauge theories of weak and electromagnetic interactions (including an excited neu-
trino E®) must contain it as a part, for suitable choices of the coupling constants
gy and g, (of order 1). The coupling constant g is always fixed by the Fermi con-
stant

2
V28 =G=10"5M-2, (2.4)
w2 P
and the anomalous magnetic moment K is equal to 1 in these theories. We shall re-
turn to the discussion of the special models in sect. 4.
In third order of approximation the Lagrangian (2.3) gives rise to the two diagrams
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Fig. 2. Amplitude for E® -> vy in the one-loop approximation.

Fig. 3. W and Z° contribution to the electron’s electromagnetic vertex.”

shown in fig. 2, for which the amplitude is of order g2e. As we shall see in the fol-
lowing section these diagrams give separately finite contributions to A. Qualitatively
this may be understood in the following way. Diagrams 2a and 2b are structurally
identical to the weak corrections to the electromagnetic vertex of the electron shown
in fig. 3. In particular the transition magnetic moments in which we are interested,
correspond to the weak corrections to the magnetic moment of the electron from
the diagrams in fig. 3. It is well-known that these are finite for K =1 *.

3. Evaluation of the amplitudes

The two diagrams in fig. 2 have a number of common factors that we isolate by
writing

= pol bz
T=eg e"u, (1t75)S, (8y*+&V5)ugo , (3.1
where (corresponding to the two diagrams)
* The anomalous magnetic moment from fig. 3a was first (correctly) evaluated by Brodsky and
Sullivan {9] and Buinett and Levine [10] for arbitrary K using a “‘¢” cut-off of the vector

propagator. The contribution from fig. 3b has been evaluated by a number of authors. We re-
fer to the general reviews of the subject {12—-14].
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S, =82+Sp, (3.2)
with
Nl P R RN AUN ALV (33)
Sp=—i d" v, &—m)~y, ¢ -m)~t v DPOQ) . (3.4)
an”

In both cases we have
L=p-1, 3.9)
I,=q- l. (3.6)

In eq. (3.3) we use a matrix notation in order to avoid too many vector indices. The
vector propagator

_ 2\ po po_jp10/,,2
DPo(l) = (%ﬂi_) =g_ELIT“1_ (3.7)
“—u I“—u
is in its unitary form, and the W electromagnetic vertex Wﬁ"(lzll) has the form
(forK=1)

W, (1) = Uyt +e, (1 —20) + (1,21 e, . (3.8)

The symbols e, are the unit vectors, i.e. (le,)?? =[P 5],

Power counting indicates that (3.3) is superficially quartically divergent while
(3.4) is quadratically divergent. The reduction of divergences only shows up after a
certain amount of algebraic manipulation and transformation of the integrals has
been performed. It is therefore necessary to regulate the naive expressions and we
have chosen to use the t’Hooft-Veltman dimensional regularization scheme [15] be-
cause of its calculational efficiency.

The opposite sign in (3.3) and (3.4) is essentially due to the fact that W™ and e~
have opposite charges. One may check the relative sign by observing that S, struc-
turally is related to the neutrino vertex correction shown in fig. 4. As it is known
[11] that the neutrino self-charge vanishes we expect that S, = 0 for k, = 0. In fact
putting ¢ = p in (3.3) and (3.4) and using the identities



R. Bertlmann et al., Radiative decay 529

Fig. 4. Neutrino vertex correction.

o 1 _ 1 1
art-m  F—m e m (3.9)
0 -
a—l;D(l) =-D(I) WM(Z, nHD(1), (3.10)
we find that we may write S, as the integral over a total derivative
n
s,=1f S5 2 -m 7y, D21, (3.11)
(2m)" ai+

which indeed vanishes when the theory is dimensionally regularized [15] *.

It is very easy to generate a large number of terms in evaluating SE. Itis therefore
imperative to use a number of simplifying tricks before introducing Feynman param-
eters. The first of these is to use the Gordon transformation in eq. (2.1). It takes the
form

ioﬂvk”:'pﬂ+q#—M’y# , (3.12)

where the sign ~ indicates equality when sandwiched between the relevant spinors.
Thus the terms that we are interested in may be found as coefficients 0f(p+q)“
while terms proportional to v, may be dropped. Terms proportional to k,, =(p—q),
may be dropped because of gauge invariance. Likewise terms containing g may be
reduced by moving g to the left where it eventually hits the neutrino spinor and
vanishes. Terms containing # may be moved to the right until they hit the £° spinor
where pr=M.

The vector part of the integrand of S§ may be written in the following way

2
(12+ll)“(l 1y, [u) + 2(e”k~keu) N Iy e, N eﬂl1
Dle ;.LZD2 ,ule
(3.13)
* Perhaps we should remark that in this calculation the particles are assumed to be off the

mass shell so that it makes sense to put g = p, and that the vanishing of S“ does not depend
on K being equal to 1.

D(IYW, (1, 1)D(l) =

>
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where D; = l,~2 — u2. Observe that the most divergent part has dropped out because
Iy - W, -1 = 0. The last two terms cannot give any contribution because they lead
to expressions of the form F(4)y, ~ v, or v, F(p) ~ v, after integration; i.e. they
may be dropped. The remaining most divergent terms are the ones containing
(I, +1}),, 131, . But writing

A=m) My =t m—m(E—m)” (p-m)
we see that we may drop the first two of these because the expression

[ami,—mya +1,),/p, D,

can only depend on k. Hence we arrive at the expression

a4 1
s f 2oy D1D,D, {+0), v, ,Grm)y?
(1) +1), ﬁz Frm)(p—m) + 2y, (rm)k — K Frm)y ), (3.14)
u

where D = I2-m2. Similarly we find from (3.4)

b . (d" 1
i (2m” DiD;,D; bt rmyy, ey rm)y”
+§ (B rm)y (4 +m)E—m)} (3.15)

where D are obtained from D; by interchanging m and y.

There is still a superficial logarithmic divergence but it is easily seen that it can
only occur in terms ~ y,, and will be dropped. Thus we have demonstrated the
finiteness of S,,.

The remainder of the calculation is now straightforward. If one first combines
the denominators Dy and D, in S: by means of the Feynman parameter y and af-
terwards combines the result with D5 using x, one arrives at the following charac-
teristic denominator after carrying out the momentum integrations

L=x;12+(1—x)m2 — yx(1-x)M? . (3.16)
The denominator of SB is obtained by interchanging u and m, an operation that may

be counteracted by letting x - 1 —x. Hence S;‘ and S}f have the same denominator
and may be added together. The result is
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(pta), y 7

S# = 32ﬂ2 ;—2 (I++1_ —M) N (317)
with
1 i _ 2 N 4.2
1+=3M”10f ax [ ay U x)(xyMLm) wx (3.18)
2 2
=f dx f dy 4x(1—y(1—x))u +L2(1—x)(1—xy)m (3.19)
0 0

These expressions are of course real below the threshold for the intermediate state,
ie.forM<u+m.

In the calculation of the integrals in diagram 2a one meets the same difficulties
as in the calculation of the weak correction to the anomalous magnetic moment of
the muon [11, 16, 17]. These so-called ambiguities in routing the integration mo-
mentum which give rise to finite anomalous contributions to the integrals are re-
solved in the renormalizable gauge models, where calculations can be carried out in
manifestly renormalizable gauges [18] or by using the position space regularization
procedure discussed by Kummer and Lane [21]. In our case the ambiguity has been
settled by choosing a v that anticommutes with all y-matrices in the derivation of
eq. (3.1). In the dimensional regularization scheme no definition of -y exists, which
would preserve all Ward identities for n # 4 *. t'Hooft and Veltman [15] suggest a
7s that anticommutes with the “first four” components of v, and commutes with
the rest. It was pointed out in ref. [11], however, that such a choice does not lead
to the correct value for the muon’s anomalous magnetic moment. Choosing a v
which anticommutes with all components of 7, leads in the case of the g—2 of the
muon to the correct value [11] and we have therefore adopted this procedure.

4. Discussion of the results

The dimensionless parameter A introduced in eq. (2.1) can now be determined

M _

327 \/—

The order of magnitude of the decay rate is thus

Ma ( M2 )2=3.4>< 1072 (—Ai)s ev. (4.2)

3211'2\/_ Mp

A= ((gv"'gA)I +(gV gA)I) (4.1)

* We would like to thank Professor W. Kummer for a discussion about this point.
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In order to evaluate the integrals /, we assume that the charged vector boson is much
heavier than any lepton, i.e. 4 > M, m. In this approximation we get from (3.18) and
(3.19)

m

L=-8%+. .., (4.3)
2 2

1_=3—3ﬂ2+§M—2+.... (4.4)
u u

Hence unless gy =g, we find in the simple model used here where m <M that

9 aM(GM?)?

48 74

[(E® > vy) = (8y—84)° - (4.5)

In the same model (in fact in all models) we have

_ M(GM?)?
P(E > en, e =ML dghgd) (46)
so that
2
M(E®->py) 27 a §v—8a)
sl e S (4.7)

P(E® »e7p, e g%, +gi

As the muon and electron (for Mo > m“) give the same leading contribution we in-
fer

(4.8)

2
T(E® - vy) _27 o €v—8a)
T(E® >e v e") + T(E® >e7v ") T ogh+gl

=

The right-hand side is maximally 2] @/m = 1.7 a/m which should be compared with
the estimate (1.9), 6 a/m, of Bjorken and Llewellyn Smith [3].

We now turn to the discussion of the various models. In the “2-2" model [3]
only the right-handed part of E° couples to the electron, i.e. gy =g4 = 1. The lead-
ing contribution comes now from I, rather than /_ and we find

P(E° ~> »7) =122( me)2
(E® > e v et +T(EC »emp ut) " \Mpo/

4.9

which is very small due to the appearance of the electron mass.

In the second model of Prentki and Zumino [5] as well as in the Georgi-Glashow
model [4] a heavy positively charged electron type lepton E* appears. It gives an
amplitude described by the diagrams in fig. 5. They are of exactly the same structure
as in fig. 2 and may be obtained from the same formulas, (3.18), (3.19) and (4.1), by
making the appropriate substitutions, i.e.
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Fig. 5. Additional amplitude for E® - vy in models with an E*.

GM2 ! ’ r r ! !
A= Gyt )+ (By—8 ) _ — (gy*8 ) —(@y—g)l),  (4.10)

32122

where gy, gy are the E°E*W™ coupling constants defined as in (2.3). I, are found
by replacing m by M+. The overall sign change is due to the change of sign of the
charge of the particles emitting the photon. In the second model of Prentki and
Zumino [5] one has gy = —g, = —gy =g, = —1 so that the contributions from

fig. 2 and fig. 5 interfere constructively. Hence in the same approximation as before,
(Uy > Mgo, Mg+, m,), we get

o
Nliinda); =2 @.11)

M(E® >e v, ) +D(EC »ev ut) 4

which is almost exactly the result guessed by Bjorken and Liewellyn Smith [3] (eq.
(1.9)).

In the Georgi-Glashow model [4] one finds gy = gy = cot 1§ and gA=8A =tgiB
where § is the mixing angle. The contributions interfere destructively in this case but
this is counteracted by the fact that the E* may have a mass comparable to E°. The
leading term in (4.4) is cancelled and we find from (4.3) *:

[(E® > vy) -4 & _cosB
P(E® > e7v,e") + T(E® > e v, i) T 1 +cos?g

(4.12)

The right-hand side has a maximum 24 o/ = 5.5% which is attained for B = 0. This
value is, however, forbidden by the g—2 of the muon which disagrees with experi-
ment unless sin § < 4 [12]. This constraint is, however, not very serious. Taking it
into account the maximum is reduced to 5.25%.

* We have here used the relation ME+/ME0 = 2 cos 8. The W-mass is #y = 53 GeV sin B in this
model. Thus in order that our approximation uy > Mpo, Mg+, m, be valid we must require
that g is not too close to 0° or 90°.
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Fig. 6. Amplitude in 4 -fermion theory.

Finally we should perhaps mention that if one attempts to calculate the decay
rate in old-fashioned 4-fermion theory (fig. 6) the result is entirely dependent on
the regularization procedure *.

5. Conclusions

We have evaluated the branching ratio of E® - v, v in several different models of
weak interactions ranging from old-fashioned four-fermion theory over pre-gauge W
theory, to the modern renormalizable unified theories of weak and electromagnetic
interactions. The branching ratio is extremely model dependent as witnessed by
(4.8), (4.9), (4.11) and (4.12). The numerical values range from zero to 5% of the
leptonic decay modes, (E® > e v, e", ey, u*). The calculation (sect. 3) has been
organized in such a way that it is easy to evaluate the branching ratio in any model
not considered here.

The authors would like to thank the organizers of the “Workshop on Weak Inter-
actions” held in Billingehus, Skévde, Sweden in July 1973 for their kind hospitality.
We would also like to thank the participants for many stimulating discussions and
comments.

Note added in proof

Our result for the Georgi-Glashow model (eq. (4.12)) agrees with the recent cal-
culation of Pi and Smith [22].

* If one regulates the diagram of fig. 6 using a Pauli-Villars procedure the result is identically
zero (/. = I_ = 0). If one uses dimensional regularization the result is non-zero due to the
fact that 7”7” = 5 and not 4. That changes the y-algebra in the numerator and leaves a term
proportional to n—4. This zero is however removed by a pole, 1/(n—4), corresponding to the
logarithmic divergence of the momentum integral and the result is finite (/, = —4 m/M, I_ = 0).
If the value of the diagram in fig. 6 is defined to be the leading term in fig. 2b for u —> = (which
is proportional to 1/u?) a finite value again results ({, = ~4 m/M,I_ = %).
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